
Generating quantitative precipitation forecasts using a 
knowledge based system 

Harvey Stern 
Bureau of Meteorology, Australia 

Preface 
     'Consider mechanically integrating judgmental and statistical forecasts instead of making 
judgmental adjustments to statistical forecasts … Judgmental adjustment (by humans) of 
(automatically generated statistical forecasts) is actually the least effective way to combine 
statistical and judgmental forecasts … (because) judgmental adjustment can introduce bias1 
(Mathews and Diamantopoulos, 1986) …The most effective way to use (human) judgment is as 
an input to the statistical process … Cleman (1989) reviewed over 200 empirical studies on 
combining and found that mechanical combining helps eliminate biases and enables full 
disclosure of the forecasting process. The resulting record keeping, feedback, and enhanced 
learning can improve forecast quality' (Sanders and Ritzman, 2001).  
Introduction 
     Sanders and Ritzman (2001) highlight the difficulty associated with utilising (human) 
judgment as an input to the statistical process 'when the (human) forecaster gets information at 
the last minute'. In generating the predictions presented here, the strategy is therefore to take 
judgmental (human) forecasts (derived with the benefit of knowledge of all available computer 
generated forecast guidance), and to input these forecasts into a system that incorporates a 
statistical process to mechanically combine the judgmental (human) forecasts and the computer 
generated forecast guidance, thereby immediately yielding a new set of forecasts.  
     In this context, the purpose of the present work is to evaluate the new set of forecasts, and to 
document the increase in accuracy achieved by that new set of forecasts over that of the 
judgmental (human) forecasts.  
     Some 30 years ago, Snellman (1977) lamented that whereas the initial impact of guidance 
material was to increase the accuracy of predictions on account of a healthy human/machine 
'mix', operational meteorologists were losing interest and that the gains would eventually be 
eroded by what he termed the 'meteorological cancer'.  Snellman suggested that producing 
automated guidance and feeding it to the forecaster who 'modifies it or passes it on', 
encourages forecasters 'to follow guidance blindly' and concluded by predicting an erosion of 
recent gains. Hindsight informs us from forecast verification statistics that the erosion of gains 
did not take place. In fact, the accuracy of forecasts continued to increase - see, for example, 
Stern (2005a, 2005c). Nevertheless, evidence is emerging that the increasing skill displayed by 
the guidance material is rendering it increasingly difficult for human forecasters to improve upon 
that guidance (Mass and Baars, 2005; Ryan, 2005). 
A knowledge based system 
     Over recent years, the present author has been involved in the development of a knowledge 
based weather forecasting system (Stern, 2002, 2003, 2004a, 2004b, 2005a, 2005b, 2005c, 
2006). Various components of the system may be used to automatically generate worded 
weather forecasts for the general public, terminal aerodrome forecasts (TAFs) for aviation 
interests, and marine forecasts for the boating fraternity. The knowledge based system 
                                                           
1 Stern (1996) documents forecaster over-compensation for previous temperature errors. 



generates these products by using a range of forecasting aids to interpret NWP model output in 
terms of such weather parameters as precipitation amount and probability, maximum and 
minimum temperature, fog and low cloud probability (Stern and Parkyn, 2001), thunderstorm 
probability (Stern, 2004b), wind direction and speed, and swell (Dawkins, 2002). For example, 
Stern's 2005b forecasts in weather graphic format are generated from an algorithm that has a 
logical process to yield HTML code by combining predictions of temperature, precipitation, wind, 
morning and afternoon weather, and special phenomena (thunderstorm, fog), with features of 
the forecast synoptic type (strength, direction, and cyclonicity of the surface flow). 
     Stern (2005b) conducted a 100-day trial (Feb 14, 2005 to May 24, 2005) of the performance 
of the knowledge based system, with twice-daily forecasts being generated out to seven days in 
advance. During the trial, the overall percentage variance of observed weather explained by the 
forecasts so generated (the system's forecasts) was 43.24% compared with 42.31% for the 
official forecasts.  That the knowledge based system achieved some success in its attempt to 
replicate the cognitive decision making processes in forecasting is confirmed by the closeness 
of the overall percentage variances explained by the two sets of forecasts. Specifically for 
precipitation, the percentage variance explained by the quantitative precipitation forecasts and 
probability of precipitation forecasts so generated was 26.78% compared with 25.07% explained 
by the official forecasts. On a rain/no rain basis, the percentage of correct forecasts so 
generated was 78.82% compared with 77.64% of the official forecasts.  
     However, the overall percentage variance of official forecasts explained by the system's 
forecasts was only 45.91%. This was made up of 63.59% of the variance of officially forecast 
temperature, and 28.23% of the variance of officially forecast precipitation. This indicates, that, 
on a day-to-day basis, there are significant aspects of the processes employed in deriving the 
official forecasts that are not taken into account by the system's forecasts (in all likelihood what 
Sanders and Ritzman (2001) refer to as 'domain knowledge'2), and vice versa. 
     Combining forecasts by mathematically aggregating a number of individual forecasts 
increases the reliability of forecasts (Kelley, 1925; Stroop, 1932) and averages out unsystematic 
errors (but not systematic biases) in cue utilization. A common method for combining individual 
forecasts is to calculate an equal weighted average of individual forecasts' (Stewart, 2001). 
However, under some conditions unequal weights make sense 'if you have strong evidence to 
support unequal weighting' (Armstrong, 2001b)3. Regarding the two sets of forecasts as partially 
independent and utilising linear regression to optimally combine the estimates of minimum 
temperature, maximum temperature, precipitation amount, and precipitation probability, Stern 
(2005b) demonstrated a lift in the overall percentage variance of observed weather explained. 
This result suggested that adopting such a strategy of optimally combining the official and 
system predictions has the potential to deliver a set of forecasts that are substantially more 
accurate than those currently issued officially. Indeed, the overall percentage variance of 
observed weather explained was lifted (by the consensus forecasts) to 50.21% from 43.24% 
(system) and 42.31% (official). Specifically for precipitation, the percentage variance explained 
was lifted (by the consensus forecasts) to 34.09% from 26.78% (system) and 25.07% (official), 
                                                           
2 Sanders and Ritzman (2001) define 'domain knowledge' as 'knowledge practitioners gain through 
experience as part of their jobs' and make particular reference to that component of domain knowledge 
named 'contextual knowledge, which is the type of knowledge one develops by working in a particular 
environment.' 'The quality of domain knowledge is affected by the forecaster's ability to derive the 
appropriate meaning from the contextual (or environmental) information' (Webby et al., 2001).  
3 Krishnamurti et al. (1999) found that weather forecasts based on a combined forecast using weights 
based on regression were more accurate than combined forecasts with equal weights. 



whilst on a rain/no rain basis, the percentage of correct forecasts was lifted to 83.55% from 
78.82% (system) and 77.64% (official)4. 
Ongoing work 
     The knowledge based system has been modified so that it now automatically integrates 
judgmental (human) forecasts and the computer generated guidance, thereby incorporating the 
forecasters' valuable contextual knowledge into the process5. It is undergoing a 'real-time' trial, 
the results of which are being evaluated.  
     In conclusion, there is an increasing interest in the question of what might be the appropriate 
future role for the human in the forecast process (Stewart, 2005). The answer may be that the 
future role of human forecasts is as an input to a system that mechanically combines the human 
forecasts with the computer generated guidance 
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