
 1

COMBINING HUMAN AND COMPUTER GENERATED FORECASTS 
USING A KNOWLEDGE BASED SYSTEM 

 
Harvey Stern * 

 
Bureau of Meteorology, Australia 

 
ABSTRACT 

     Stern’s 2005 paper "Defining cognitive decision making processes in forecasting: a knowledge based 
system to generate weather graphics", presented an analysis of Day 1 to Day 7 rainfall and temperature 
forecasts during a 100-day real-time trial conducted from February to May 2005. The analysis suggested 
that adopting a strategy of combining human and computer-generated predictions has the potential to lift 
the percentage variance explained by human predictions (the current official forecasts) of rainfall and 
temperature by 7.90%. Forecast verification data from a new 100-day real-time trial, conducted from 
August to November 2005, on a new set of independent data, was analysed. For this new trial, the 
knowledge based system (now) modified in order to mechanically combine human and computer-
generated predictions and, therefore, to (now) take into account forecasters’ valuable domain and 
contextual knowledge, was utilised. The trial confirmed the conclusion presented in the previous paper, 
with the percentage variance explained by human predictions (the official forecasts) being lifted by 7.72%. 
This increase in accuracy arises because:  

• In most circumstances, the combining strategy leaves the system’s forecasts almost identical to 
the human (official) forecasts (the percentage variance of the official forecasts explained by the 
combined forecasts was 77.17%); whilst,  

• In those few circumstances when the combining strategy substantially changes the human 
(official) forecasts, the system's forecasts usually represent an improvement.  

     There is an increasing interest in the question of what might be the appropriate future role for the 
human in the forecast process. The results presented here suggest that the future role of human 
forecasts may be as an input to a system that mechanically combines human predictions with computer 
generated forecasts. 
 
1. PREFACE 
     'Consider mechanically integrating judgmental and statistical forecasts instead of making judgmental 
adjustments to statistical forecasts 
     …Judgmental adjustment (by humans) of (automatically generated statistical forecasts) is actually the 
least effective way to combine statistical and judgmental forecasts … (because) judgmental adjustment 
can introduce bias (Mathews and Diamantopoulos, 1986) (see also, Stern (1996), who documents 
forecaster over-compensation for previous temperature errors) 
     …The most effective way to use (human) judgment is as an input to the statistical process 
     … Cleman (1989) reviewed over 200 empirical studies on combining and found that mechanical 
combining helps eliminate biases and enables full disclosure of the forecasting process. The resulting 
record keeping, feedback, and enhanced learning can improve forecast quality' (Sanders and Ritzman, 
2001).  
 
2. INTRODUCTION 
     Sanders and Ritzman (2001) highlight the difficulty associated with utilising (human) judgment as an 
input to the statistical process 'when the (human) forecaster gets information at the last minute'. 
      In generating the predictions presented here, the strategy is therefore: 
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• To take judgmental (human) forecasts (derived with the benefit of knowledge of all available computer 
generated forecast guidance); and, 

• To input these forecasts into a system that incorporates a statistical process to mechanically combine 
the judgmental (human) forecasts and the computer generated forecast guidance; 

Thereby immediately yielding a new set of forecasts.  
     In this context, the purpose of the present work is: 
1. To evaluate the new set of forecasts; and, 
2. To document the increase in accuracy achieved by that new set of forecasts over that of the 

judgmental (human) forecasts.  
 
3. BACKGROUND 
     Some 30 years ago, Snellman (1977) lamented that whereas the initial impact of guidance material 
was to increase the accuracy of predictions on account of a healthy human/machine 'mix', operational 
meteorologists were losing interest and that the gains would eventually be eroded by what he termed the 
'meteorological cancer'.  
     Snellman suggested that producing automated guidance and feeding it to the forecaster who 'modifies 
it or passes it on', encourages forecasters 'to follow guidance blindly' and concluded by predicting an 
erosion of recent gains. 
      Hindsight informs us from forecast verification statistics that the erosion of gains did not take place. In 
fact, the accuracy of forecasts continued to increase - see, for example, Stern (2005a, 2005c). 
     Nevertheless, evidence is emerging that the increasing skill displayed by the guidance material is 
rendering it increasingly difficult for human forecasters to improve upon that guidance (Mass and Baars, 
2005; Ryan, 2005). 
 
4. A KNOWLEDGE BASED SYSTEM 
     Over recent years, the present author has been involved in the development of a knowledge based 
weather forecasting system (Stern, 2002, 2003, 2004a, 2004b, 2005a, 2005b, 2005c, 2005d). Various 
components of the system may be used to automatically generate worded weather forecasts for the 
general public, terminal aerodrome forecasts (TAFs) for aviation interests, and marine forecasts for the 
boating fraternity. 
     The knowledge based system generates these products by using a range of forecasting aids to 
interpret NWP model output in terms of such weather parameters as precipitation amount and probability, 
maximum and minimum temperature, fog and low cloud probability (Stern and Parkyn, 2001), 
thunderstorm probability (Stern, 2004b), wind direction and speed, and swell (Dawkins, 2002).  
     For example, Stern's 2005b forecasts in weather graphic format (Figure 1) are generated from an 
algorithm that has a logical process to yield HTML code by combining predictions of temperature, 
precipitation, wind, morning and afternoon weather, and special phenomena (thunderstorm, fog), with 
features of the forecast synoptic type (strength, direction, and cyclonicity of the surface flow). 
 
5. THE TRIAL OF FEBRUARY TO MAY 2005 
     Stern (2005b) conducted a 100-day trial (Feb 14, 2005 to May 24, 2005) of the performance of the 
knowledge based system at predicting Melbourne’s weather, with twice-daily forecasts being generated 
out to seven days in advance. 
     During the trial, the overall percentage variance of observed weather explained by the forecasts so 
generated (the system's forecasts) was 43.24% compared with 42.31% for the official forecasts. That the 
knowledge based system achieved some success in its attempt to replicate the cognitive decision making 
processes in forecasting is confirmed by the closeness of the overall percentage variances explained by 
the two sets of forecasts. 
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     Specifically for precipitation, the percentage variance explained by the quantitative precipitation 
forecasts and probability of precipitation forecasts so generated was 26.78% compared with 25.07% 
explained by the official forecasts1. 
     On a rain/no rain basis2, the percentage of correct forecasts so generated was 78.82% compared with 
77.64% of the official forecasts.  
     However, the overall percentage variance of official forecasts explained by the system's forecasts was 
only 45.91%, indicating that the system’s forecasts were not highly correlated with the official forecasts. 
This was made up of 63.59% of the variance of officially forecast temperature, and 28.23% of the 
variance of officially forecast precipitation. 
     This indicates, that, on a day-to-day basis, there are significant aspects of the processes employed in 
deriving the official forecasts that are not taken into account by the system's forecasts (in all likelihood 
what Sanders and Ritzman (2001) refer to as 'domain knowledge'), and vice versa. 
     Sanders and Ritzman (2001) define 'domain knowledge' as 'knowledge practitioners gain through 
experience as part of their jobs' and make particular reference to that component of domain knowledge 
named 'contextual knowledge, which is the type of knowledge one develops by working in a particular 
environment.' 'The quality of domain knowledge is affected by the forecaster's ability to derive the 
appropriate meaning from the contextual (or environmental) information' (Webby et al., 2001). 
     Combining forecasts by mathematically aggregating a number of individual forecasts increases the 
reliability of forecasts (Kelley, 1925; Stroop, 1932) and averages out unsystematic errors (but not 
systematic biases) in cue utilization. 
     A common method for combining individual forecasts is to calculate an equal weighted average of 
individual forecasts' (Stewart, 2001). However, under some conditions unequal weights make sense 'if 
you have strong evidence to support unequal weighting' (Armstrong, 2001b). 

                                                           
1 The official Amount of Precipitation forecasts are expressed in terms of rainfall ranges and, for 
verification purposes, the Amount of Precipitation forecast is taken to be the mid-point of the range 
forecast: 
  Range 0 = No precipitation; Range 1 = 0.2 mm to 2.4 mm (1.3 mm); Range 2 = 2.5mm to 4.9mm (3.7 
mm); Range 3 = 5.0mm to 9.9mm (7.5mm); Range 4 = 10.0mm to 19.9mm (14.9mm); Range 5 = 20.0mm 
to 39.9mm (29.9mm); Range 6 = 40.0mm to 79.9mm (59.9mm); and, Range 7 = 80.0mm or more 
(119.9mm). 
  The official Probability of Precipitation forecasts were taken to be Stern’s (1999) interpretation of the 
words utilised in the official forecasts. The validity of this interpretation was verified on the basis of the 
data collected during the trial of February to May 2005 and modified, for subsequent application, on the 
basis of this verification (refer to Table 1).  
2 For verification purposes, it is said that there has been rain on a particular day when at least one of the 
0300, 0600, 0900, 1200, 1500, 1800, 2100, or 2400 Melbourne CBD present or past weather 
observations include a report of precipitation, with a recording of at least 0.2 mm during the preceding 
three hours. 
  Should at least one of the 0300, 0600, 0900, 1200, 1500, 1800, 2100, or 2400 Melbourne CBD present 
or past weather observations include a report of precipitation, but with a recording of only a ‘trace’ during 
the preceding three hours, the day is not regarded as ‘rain day’. However, in this circumstance, for the 
purposes of verifying the forecast Amount of Precipitation, the amount fallen is regarded as being 0.1mm, 
and for the purposes of verifying the forecast Probability of Precipitation, the Probability of Precipitation is 
regarded as 50%. 
  Should at least one of the 0300, 0600, 0900, 1200, 1500, 1800, 2100, or 2400 Melbourne CBD present 
or past weather observations include a report of distant precipitation, but with a recording of 0.0mm 
during the preceding three hours, the day is not regarded as ‘rain day’. In this circumstance, for the 
purposes of verifying the forecast Amount of Precipitation, the amount fallen is regarded as being 0.0mm, 
and for the purposes of verifying the forecast Probability of Precipitation, the Probability of Precipitation is 
regarded as 25%. 
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     Krishnamurti et al. (1999) found that weather forecasts based on a combined forecast using weights 
based on regression were more accurate than combined forecasts with equal weights. 
 
6. COMBINING FORECASTS 
     Regarding the two sets of forecasts as partially independent and utilising linear regression to optimally 
combine the estimates of minimum temperature, maximum temperature, precipitation amount, and 
precipitation probability, Stern (2005b) demonstrated a lift in the overall percentage variance of observed 
weather explained. 
     This result suggested that adopting such a strategy of optimally combining the official and system 
predictions has the potential to deliver a set of forecasts that are substantially more accurate than those 
currently issued officially. 
     Indeed, the overall percentage variance of observed weather explained (an excellent measure of the 
usefulness of the forecasts) was lifted (by the consensus forecasts) to 50.21% from 43.24% (system) and 
42.31% (official), a lift of 7.90% from that achieved by the official forecasts.    
     The accuracy increases because 'Combining is most effective when the forecasts combined are not 
correlated and bring different kinds of information to the forecasting process' (Sanders and Ritzman, 
2001) and that although 'both (human) intuitive and (computer) analytic processes can be unreliable … 
different kinds of errors will produce that unreliability' (Stewart, 2001). 
     What these data suggested was that adopting a strategy of combining predictions has the potential to 
deliver a set of forecasts that explain as much as 7.90% more variance than that explained by forecasts 
currently issued officially.  
     In fact, forecast verification data from a new real-time trial presented in the sections that follow, 
demonstrate that a substantial increase in accuracy is, indeed, achievable, were one to adopt such a 
strategy. 
 
7. MODIFYING THE SYSTEM 
     The knowledge based system has been modified so that it now automatically integrates judgmental 
(human) forecasts and the computer generated guidance, thereby incorporating the forecasters' valuable 
contextual knowledge into the process. Sanders and Ritzman (2001) refer to their 1992 study, in which 
they demonstrated that judgmental forecasts based on contextual knowledge were significantly more 
accurate than those based on technical knowledge (and) … were even superior to (a) … statistical 
model.'    The knowledge based system, so modified, underwent a 'real-time' trial, the results of which are 
evaluated in the present paper. 
      This process of integrating human and computer generated forecasts is illustrated for Probability of 
Precipitation estimates in Figure 2. 
     Stern (1999) published a proposed interpretation of words used in forecasts in terms of Probability of 
Precipitation and Amount of Precipitation. 
     The system includes an algorithm that interprets the (official) worded precis in terms of Probability of 
Precipitation and Amount of Precipitation. This algorithm was derived from Stern’s (1999) proposed 
interpretation and a verification of the official precis that was conducted during the trial of February to May 
2005. 
     By way of illustration, an extract of the probability (%) algorithm, and an extract of the amount (mm) 
algorithm, are respectively given in Tables 1 and 2. 
     Because the system’s weather icons (Figure 1) arise largely from the system’s generated Probability of 
Precipitation, and, conversely, the human (official) Probability of Precipitation, arises from an an algorithm 
that interprets the (official) worded precis, any verification of the Probability of Precipitation may also be 
regarded as representing a verification of forecast sensible weather. 
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8. THE TRIAL OF AUGUST TO NOVEMBER 2005 
     The new 100-day trial, conducted with a fresh set of data (Aug 20, 2005 to November 27, 2005), of the 
performance of the modified system involves daily forecasts being generated out to seven days in 
advance. 
     Evaluation of the forecasts prepared during the 100 days of the trial shows that the overall percentage 
variance of official forecasts explained by the system's forecasts is now lifted to 77.17% (from 45.91% 
previously), demonstrating that, in most circumstances, the combining strategy leaves the system’s 
forecasts almost identical to the official forecasts.. 
     This is made up of 84.37% of the variance of officially forecast temperature (63.59% previously), and 
69.97% of the variance of officially forecast precipitation (28.23% previously). 
     Furthermore, the overall percentage variance of observed weather explained (a sound measure of the 
usefulness of the forecasts) is now lifted by the system to 40.15% from 32.43% (official) – a rise of 7.72%, 
which is close to the 7.90% lift suggested previously by Stern’s (2005b) consensus forecasts, 
demonstrating that, in those few circumstances when the combining strategy substantially changes the 
official forecasts, the system’s forecasts usually represent an improvement on the official forecasts. 
     This substantial increase in accuracy arises because: 
� In most circumstances, the combining strategy leaves the system’s forecasts almost identical to the 

human (official) forecasts; whilst, 
� In those few circumstances when the combining strategy substantially changes the human (official) 

forecasts, the system’s forecasts usually represent an improvement on the human (official) forecasts. 
     Figure 3 shows that the overall percentage variance of the observed weather explained is lifted by 
between 5% and 10% at most lead times.  
     Specifically for precipitation, the percentage variance explained is lifted by the system to 32.98% 
(made up of 40.33% for Probability of Precipitation and 25.63% for Amount of Precipitation ) from 23.73% 
(official) - made up of 29.30% for Probability of Precipitation and 18.17% for Amount of Precipitation. 
     On a rain/no rain basis, the percentage of correct forecasts generated by the system is lifted by the 
system to 76.14% from 70.43% (official). 
     The root mean square error (rmse) of the √(Amount of Precipitation forecast) is reduced by the system 
to 0.973 mm from 1.108 mm (official). The rmse of the √(Amount of Precipitation forecast) is a preferred 
verification parameter to (Amount of Precipitation forecast) in order to reduce the skewness in the 
distribution of the latter. 
     Figure 4 shows that the overall percentage variance of the observed precipitation explained is lifted by 
between 6% and 12% at most lead times.  
     Specifically for temperature, the percentage variance explained is lifted by the system to 47.32% 
(made up of 45.83% for minimum temperature, and 48.81% for maximum temperature) from 41.13% 
(official) - made up of 41.58% for minimum temperature, and 40.68% for maximum temperature. 
     The rmse of the temperature forecasts generated by the system was 2.604 deg C (made up of 2.634 
deg C for minimum temperature, and 2.573 deg C for maximum temperature) compared with 2.775 deg C 
(made up of 2.704 deg C for minimum temperature, and 2.845 deg C for maximum temperature) for the 
official forecasts. 
     Figure 5 shows that the overall percentage variance of the observed temperature explained is lifted by 
between 5% and 9% at most lead times. Only at Day-1, is the overall percentage variance of the 
observed temperature explained not lifted. 
     These results indicate that, on a day-to-day basis, what Sanders and Ritzman (2001) refer to as 
'domain knowledge', is now taken into account by the system. 
 
9. OTHER WEATHER ELEMENTS 
     The system also develops predictions of other weather elements (without directly utilising the 
combining process), and predictions for other localities. These include: 
• Forecasts of 9am and 3pm wind speed and direction at Melbourne Airport. The system's forecasts of 

wind speed explain 47.73% of the variance of the observed wind speed (compared with 48.96% 
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explained by the official forecasts) and predict (within half an octant) the wind direction on 72.34% of 
occasions (compared with 73.40% of the official forecasts).  
There is considerable potential for an increase in accuracy of the wind speed forecasts. Averaging the 
system and official wind speed forecasts would lift the percentage variance explained to 56.46%. 
There is also considerable potential for an increase in accuracy of the wind direction forecasts. 
Averaging the system and official wind direction forecasts would lift the percentage predictions of wind 
direction (within half an octant) to 74.47%. 

• Forecasts of the rare weather elements - thunderstorms3 and fog4. The Critical Success Index (Wilks, 
1995) of the system's forecasts of these elements is 0.000 for fog (the system failed to forecast fog on 
the occasions when it occurred), and 0.221 for thunderstorms. The Critical Success Index was 0.042 
and 0.224 for official forecasts of fog and thunderstorms, respectively. 
There is considerable potential for an increase in accuracy of the rare weather element forecasts. 
From Figure 6a, it may be seen that the verification data suggests: 
1) Reducing the probability criterion under which there is a categorical reference to fog by the 

system from 15% to 5% (when also accompanied by Probability of Precipitation of 25% or less – 
to exclude potential drizzle situations); and, 

2) Reducing the probability criterion under which there is a categorical reference to thunderstorms 
by the system from 25% to 5% (when also accompanied by Probability of Precipitation of 50% or 
more); 

would lift the Critical Success Index of the system's forecasts of these elements to 0.085 for fog, and 
0.266 for thunderstorms. 
  That the probability criteria were set too high became apparent during the early stages of the trial, 
and the system was therefore modified to operate with 5% probability criteria from Day-43. 
  An alternative approach would be to examine the relationship between the probability criterion and 
the precentage profit to be gained from protecting against the occurrence of one of these rare weather 
elements (Personal Communication: Ross Keith). This is illustrated in Figure 6b, which suggests (for 
the case of the cost of protection being one fifth the financial loss suffered if the event occurs without 
protection) an alternative view that: 
1) For fog, the probability criterion should be set to 6%; and, 
2) For thunderstorms, the probability criterion should be set to 12%. 

• Forecasts for a number of other Central District localities. Verification of the maximum temperature 
component of these forecasts reveals that, expressed as an expected departure from Melbourne’s 
maximum temperature, the mean absolute error of the system’s forecasts was 0.961 deg C, compared 
with 1.103 deg C for the official forecasts. 

 
10. CONCLUDING REMARKS 
     Stern’s (2005b) paper "Defining cognitive decision making processes in forecasting: a knowledge 
based system to generate weather graphics", presented the results of a 100-day trial which suggested 
that adopting a strategy of combining human and computer-generated predictions has the potential to 
deliver a set of forecasts that explain about 7.90% more variance than that explained by forecasts 
currently issued officially.  

                                                           
3 For verification purposes, it is said that there has been a thunderstorm in the metropolitan area during a 
particular day when at least one of the 0300, 0600, 0900, 1200, 1500, 1800, 2100, or 2400 Melbourne 
CBD and/or Melbourne Airport observations include a report of cumulonimbus with an anvil and/or 
lightning and/or funnel cloud and/or thunder (with or without precipitation) – refer to Stern (1980). 
4 For verification purposes, it is said that there has been fog in the metropolitan area during a particular 
day when at least one of the 0300, 0600, 0900, 1200, 1500, 1800, 2100, or 2400 Melbourne CBD and/or 
Melbourne Airport observations include a report of fog (including shallow fog) and/or distant fog. 
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     Forecast verification data from a new real-time trial, conducted on the knowledge based system (now) 
modified in order to mechanically combine human and computer-generated predictions and, therefore, to 
(now) take into account forecasters’ valuable domain and contextual knowledge, was analysed.  
     The analysis, the results of which are summarised in Table 3, confirmed the conclusion presented in 
the previous paper, showing that more than 7% extra variance was explained (over that explained by 
human predictions) therefore demonstrating that a substantial increase in forecast accuracy is, indeed, 
achievable, were one to adopt such a strategy of combining human and computer-generated predictions. 
     There is an increasing interest in the question of what might be the appropriate future role for the 
human in the forecast process (Stewart, 2005).       
     The results presented here suggest that the future role of human forecasts may be as an input to a 
system that mechanically combines human predictions with computer generated forecasts. 
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Figure 1. Stern’s 2005b weather graphics. 
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Figure 2. The process of integrating human and computer generated forecasts for Probability of 
Precipitation estimates: 
• Firstly, the estimate from a statistical model (of 62%) is averaged with the implied estimate 

from the NOAA Global Forecasting System (of 100%) to yield 81%;  
• Secondly, this 81% outcome is then averaged with the previous estimate (generated 

‘yesterday’) by the knowledge based system (of 65%) to yield 73%; and,  
• Finally, this 73% is then averaged with the implied estimate from the human (official) forecast 

(of 47%) to yield 60%. 
 
 

 
Figure 3. Overall percentage variance of the observed weather explained at different lead times. 
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Figure 4. Overall percentage variance of the observed precipitation explained at different lead 
times. 

 

 
Figure 5. Overall percentage variance of the observed temperature explained at different lead 
times. 

 

 
Figure 6a. Probability criterion under which there is a categorical reference to fog and thunder 
versus Critical Success Index. 
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Figure 6b. Probability criterion under which there is a categorical reference to fog and thunder 
versus Profit. 
 
 
 
 
 
Table 1 An extract of the probability (%) algorithm. 

Day:
Precis: 

1 2 3 4 5 6 7 

Sunny 1% 1% 1% 1% 3% 6% 9% 

Partly Cloudy 4% 6% 9% 11% 14% 16% 19% 

Cloudy 19% 20% 21% 23% 25% 26% 28% 

Becoming Fine 34% 33% 34% 35% 36% 36% 37% 

Few Showers 49% 47% 47% 47% 46% 47% 47% 

Drizzle Clearing 63% 61% 59% 58% 57% 57% 56% 

Showers Clearing 78% 74% 72% 70% 68% 67% 65% 

Showers 93% 88% 85% 82% 79% 77% 75% 

Rain 99% 99% 97% 94% 90% 87% 84% 

Heavy Rain 99% 99% 97% 94% 90% 87% 84% 



 12

Table 2 An extract of the amount (mm) algorithm. 
Day: 

Precis: 
1 2 3 4 5 6 7 

Sunny 0 0 0 0 0 0 0 
Partly 
Cloudy 

0 0 0 0 0 0 0 

Cloudy 0 0 0 0 0 0 0 
Becoming Fine 0 0 0 0 0 0 0 

Few showers 2 1 1 1 1 1 1 

Drizzle Clearing 2 1 1 1 1 1 1 

Showers Clearing 2 1 1 1 1 1 1 

Showers 5 4 3 2 2 1 1 
Rain 10 8 6 5 4 2 1 
Heavy Rain 20 16 13 10 7 4 1 

 
 
 
 
Table 3 Summary of Results 

 
Official System 

QPF 
(% Variance Explained) 

18.2 25.6 

Precipitation Probability / Sensible Weather 
(% Variance Explained) 

29.3 40.3 

Overall Precipitation 
(% Variance Explained) 

23.7 
 

33.0 

Minimum Temperature 
(% Variance Explained) 

41.6 
 

45.8 

Maximum Temp 
(% Variance Explained) 

40.7 48.8 

Overall Temperature 
(% Variance Explained) 

41.1 47.3 

Overall Temperature & Precipitation 
(% Variance Explained) 

32.4 40.1 

 


