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Evidence of the challenge faced by the meteorological community to 
become skilled in applying risk management products from the financial 
markets is growing. This paper presents an approach to the pricing of 
weather derivatives that employs a combination of empirical data including 
forecast verification data, regional synoptic classification data, and data 
associated with climate indices on a global scale, such as the Southern 
Oscillation Index.  The paper presents several illustrative examples that 
show how to price these options about the occurrence of an unusual 
weather event, using forecast verification data and synoptic classification 
data. 

 

1. INTRODUCTION 

     Evidence of the challenge faced by the 
meteorological community to become skilled in 
applying risk management products from the 
financial markets is growing (Dischell, 2000).   
     Papers presented to recent meteorological and 
environmental applications symposia, books such 
as "Insurance and Weather Derivatives" (Geman, 
1999) and articles in prestigious journals, such as 
Risk  and Energy and Power Risk Management are 
testimony to the increasing importance of weather 
derivatives.  The advent of weather derivatives 
raises issues such as quality control of data, 
ensuring that data are free from corruption, 
exchange of data, observational site security, and 
legal liability (Clewlow et al., 2000). 
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     The purpose of the present paper is to present 
an empirical approach to the pricing of weather 
derivatives.  It shall be seen that there are 
similarities between the approach used in the 
present paper and that of Zeng (2000).  Both take 
samples from the historical climate record to 
develop pricing models.  Specifically, Zeng (2000) 
employed: 
• An historical data base of the weather index (or 

indices) to be subsequently used in the pricing 
of the weather derivative contract (or 
contracts); 

• A corresponding historical temperature and/or 
precipitation data base; 

• The official seasonal forecast of the expected 
probability distribution of temperature and/or 
precipitation; 

to yield the expected probability distribution of the 
weather index (or indices), from which the pricing is 
derived. 
     However, the present paper builds upon Zeng's 
(2000) work by incorporating a combination of 
additional data types such as: 
• Forecast error data; 
• Regional synoptic classification data; 
• Data associated with climate indices on a 

global scale, such as the Southern Oscillation 
Index (SOI). 

     Stern (1996a) employed empirical stock market 
data to improve upon the option pricing derived 
using the Black and Scholes (1973) theoretical 



model.  It is, therefore, considered that one might 
also improve upon current weather derivative prices 
by using a combination of the aforementioned 
additional empirical data. 
     The approach may, in particular, be applied to 
managing the risk associated with extreme cases of 
weather parameters, such as temperature and 
precipitation. The approach is demonstrated with 
several illustrative examples. 
     Indeed, Stern (1999) reports a case of extreme 
(and unjustified) price volatility in agricultural 
commodities arising from traders' being unaware of 
what forecast verification data might have 
suggested. 

2. BACKGROUND 

     The earliest published work on the subject is 
that by the current author (Stern, 1992), who 
employed option-pricing theory to establish a 
measure of the economic consequences of 
changes in the global mean temperature.  These 
were examined across scales from the macro- to 
the micro-economy, being replicated by a 
combination of Global Mean Temperature futures 
contracts and an associated set of option contracts. 
     It is of interest that Stern's work, which was 
undertaken at the (Australian) Bureau of 
Meteorology, was prompted by a 1991 call by the 
Australian Electricity Supply Industry Research 
Board to conduct greenhouse research related to 
electricity supply.  It is, indeed, the energy and 
power industries that have, so far, taken best 
advantage of the opportunities presented by 
weather derivatives. 
     The subject of weather derivatives is first 
discussed in an energy and power industry journal 
by Simpson (1996/97).  Clemmons et al...(1999) 
report the first weather derivative contract as a 
"temperature-related power swap ... transacted in 
August 1996". 
     By the end of 1997, some 150 weather 
derivative deals had been completed, whilst by the 
end of 1998, this figure had increased to 500.  An 
Internet weather derivatives exchange was 
launched in January 2000.  The first Australian deal 
was transacted in April 2000.  Of the 3500 
transactions completed by the middle of the year 
2000, 98% were based on temperature, of which 
most were Degree Day contracts constructed for 
the energy and power industry. 
 

 

3. WEATHER DERIVATIVES DEFINED 

     Jain and Foster (2000) observe that "the world is 
heavily affected by the weather. But while there is 
little anyone can do to control the climate, 
businesses can now mitigate the exposure they 
face from adverse weather conditions by using 
weather derivatives". 
     These businesses include: 
• Energy and power; 
• Agriculture and agrochemicals; 
• Viticulture; 
• Brewing; 
• Clothing; 
• Construction; 
• Theme parks; 
• Retail food and drink; 
• Tourism; 
• Sporting; 
• Outdoor entertainment; 
• Water authorities and irrigation. 
     Clewlow  et al...(2000) describe a derivative as 
"a financial product that derives its value from other 
more basic variables".  These products include: 
• Futures; 
• Forwards; 
• Call options; 
• Put options; 
• Swaps. 
 
     They describe weather derivatives as being 
similar "to conventional financial derivatives, the 
basic difference coming from the underlying 
variables that determine the payoffs", such as: 
• Temperature; 
• Precipitation; 
• Wind; 
• Heating Degree Days; 
• Cooling Degree Days. 
 
     Weather derivative contracts are typically 
defined by: 
• Location; 
• Type of asset (e.g. Heating Degree Days); 
• Strike (value of underlying asset at which one 

party is obliged to compensate the other); 
• Expiry (the time when one party is obliged to 

compensate the other); 
• Notional ($ per unit of underlying asset). 
 
     Dischell (1998) notes that "Traditional weather 
insurance ... requires a demonstration of loss 
(whereas) weather derivatives ... require no 



demonstration of loss and provide protection from 
the uncertainty in normal weather". 
     This protection is achieved because a weather 
derivative contract, when applied as a hedge, sets 
limits on how far revenues can fall and expenses 
can increase.  On the other side of such a contract 
may be a speculator, to whom the risk has been 
transferred in return for a reward. 
     Alternatively, on the other side of the contract 
may be another hedger, who wishes to protect 
against loss associated with the opposite scenario 
(e.g. high temperatures) to the scenario that the 
counter-party is concerned about (e.g. absence of 
high temperatures). 
     So, like all derivatives, weather derivatives may 
be used to transfer risk from those who are 
involuntarily exposed to unwanted risk to those who 
have a traditional familiarity with risk.  

4. CALL OPTIONS 

     Our first illustrative example is that of a Cooling 
Degree Day call option.  A call option contract gives 
the holder the right (but not the obligation) to buy 
(that is, to "call"), from the seller of the call option, a 
quantity of a particular commodity on or before a 
certain date at a certain price.   
     The commodity may be something "real" (that is, 
a parcel of shares) or the commodity may be 
something "esoteric" (for example, a "parcel" of 
Cooling Degree Days).  
     Before proceeding, let us refer to a basic text on 
options in order to develop a more complete 
understanding of the meaning of the term "call 
option".  Cox and Rubinstein (1985) note that 
"options markets exist for a wide variety of 
instruments, so as to avoid needless repetition we 
will focus on the oldest and largest of these 
markets, options on common stocks". 
     They define a call option as: 

A contract giving its owner the right to buy: 
-a fixed number of shares (1000 shares in 

Australia) 
-of a specified common stock (known as the 

underlying security) 
-at a fixed price (known as the strike price) 

-at any time on or before a given date (known as 
the expiry date). 

     This definition applies only to what is termed an 
American call option.  A European call option has 
identical features to an American call option, except 
that the phrase "at any time on or before a given 
date" is replaced by "on a given date".  Options 

traded on the Australian Stock Exchange are 
American in style.  Cox and Rubinstein (1985) 
further define: 

-the act of making this transaction as exercising the 
option 

-the individual who creates the call as the seller or 
the writer 

-the individual who purchases the call as the holder 
or buyer 

-the market price of the call as the premium or price 

 
     They note that if a call is exercised, the 
complete transaction involves an initial exchange 
of: 

-call price from the buyer to the seller 
-call option from the seller to the buyer 

 
and a subsequent exchange of: 

-strike price and call option from the buyer to the 
seller 

-common stock from the seller to the buyer 

 
     For example, a TELSTRA $7.25 December call 
option bought at the close of trading on August 11, 
2000, when TELSTRA shares were trading at 
$7.12, would have cost $0.38 a share (Australian 
Financial Review, 14 August 2000).  This call gave 
the buyer the right to purchase 1000 TELSTRA 
shares for $7.25 per share at any time until the end 
of December, 2000.  On any trading day until the 
expiry date, the buyer can do one of three things: 

-sell the call back at its concurrent price, thereby 
cancelling the position 

-exercise the call by payment of $7250.00 in return 
for 1000 shares  

-retain the call and do nothing 

 
     On the expiry date the third alternative is 
equivalent to permitting the call to expire. 
     Suppose that, on the expiry date, TELSTRA 
shares were $8.00.  The buyer has the right to 
purchase 1000 shares for $7.25 each.  The buyer 
may exercise that right.  Alternatively, with the likely 
price of the option at $0.75, the buyer may choose 
to sell it.  In this circumstance, however, the buyer 
would not choose to "do nothing". 
     Alternatively, suppose that, on the expiry date, 
TELSTRA shares were $6.00.  The buyer has the 



right to purchase 1000 shares for $7.25 each.  In 
this circumstance, however, the buyer would 
obviously not choose to exercise the option.  
Furthermore, the value of the option would be zero, 
so the buyer would not have the opportunity to sell 
it.  In this circumstance, the buyer would "do 
nothing".  With this background explanation of what 
call options are, we now proceed to a weather-
related application, that of a Degree Day call 
option. 
     The number of Cooling Degree Days during a 
season (which might be regarded as a measure of 
the requirement for cooling) is the accumulated 
number of Degrees that the daily mean 
temperature is above a particular base figure, 
usually 18°C.  If the average temperature on a 
particular day is below 18°C, there is no 
contribution for that day.  Heating Degree Days 
(which might be regarded as a measure of the 
requirement for heating) are defined in the reverse 
way.  Electricity retailers are concerned with 
periods of extreme heat and cold, on account of the 
resulting heavy consumer demand leading to 
"spikes" in prices, and by purchasing Degree Day 
call options, they reduce their risk. 
     Let us now suppose that an electricity retailer 
holds a Cooling Degree Day call option. That option 
may be viewed as placing a maximum limit on the 
number of Degree Days during a season (the 
"strike") before the electricity company is entitled to 
purchase a "parcel" of Cooling Degree Days at a 
pre-determined price, regardless of the price of the 
electricity.  What this in effect means is that if, at 
the expiry of the contract, the actual number of 
Cooling Degree Days is greater than the strike, the 
seller of the option pays the buyer a certain 
amount.   
     Firstly, let us define our weather derivative 
contract thus: 
 

• Location: Not specified in this case;  
• Type of asset: Cooling Degree Days;  
• Strike: 600 Cooling Degree Days;  
• Expiry: Not specified in this case; 
• Notional: $100 per Cooling Degree Day 

above 600.      
     If, at the expiry of this contract, the accumulated 
number of Cooling Degree Days is greater than the 
strike (600), then the seller of the option pays the 
buyer the notional ($100) for each Cooling Degree 
Day above the strike.  This is illustrated in the pay-
off diagram at Figure 1. 

     For example, suppose that the accumulated 
Cooling Degree Days at the expiry is 1400.  The 
"pay-off" is then $(1400-600)x100=$80000. 

5. PRICING APPROACHES 

      There are three different approaches to the 
pricing of weather derivatives. These are: 
• Historical simulation - this involves computing 

the historical pay-off of a derivative via 
statistical analysis of past data ; 

• Direct modelling of the underlying variable's 
distribution - this involves modelling the 
underlying as a normally, or as a log-normally, 
distributed variable (similar to short-term 
forecasting); 

• Indirect Monte Carlo modelling of the 
underlying variable's distribution - this involves 
simulating a sequence of data, allowing for the 
incorporation of accurate seasonal patterns, 
mean reversion, jumps and changing volatility.  

     Historical simulation originated in the insurance 
industry. The approach asks: "What would be the 
pay-out, on average, had the company sold the 
option every year for the last n years?  For 
example, given the last 30 years of temperature 
data, we can calculate 30 samples of the pay-off for 
a Cooling Degree Day option for the month of 
January in Melbourne.  The approach is useful 
because it allows development of an indicative 
pricing methodology. 
     In order to establish what the appropriate 
distribution is, we look at the underlying variable's 
mean and standard deviation over the relevant 
period.  In some cases the distribution may be 
approximately lognormal; in other cases it appears 
more normal.  A model, that is frequently applied to 
financial market variables is one developed by 
Black and Scholes (1973).  Cox and Rubinstein 
(1985) write the Black and Scholes call option 
pricing formula: 

C=SN(x)-Kr-tN(x-σ√t) where x = ln(S/Kr-t) + (1/2)σ√t 
                                     σ√t 

where: 

C=call option price 
r=1+interest rate 

K=option strike price 
S=current market price 

t=time to expiry of option 
N=normal density function 

σ=standard deviation of security's return 

and the put option pricing formula: 



P=Kr-tN(y+σ√t)-SN(y) where y=ln(Kr-t/S) - (1/2)σ√t 
and P=put option price 

σ√t 

 
     The key assumption of the Black and Scholes 
model is that the variable underlying the option is 
lognormally distributed. The model (therefore) 
suggests that the underlying variable can increase 
without limit.  Weather variables, such as 
temperature, tend to remain within relatively narrow 
bands - a "mean-reverting" type of behaviour.  As a 
result, it is considered that the Black and Scholes 
model has deficiencies when applied to weather 
variables. 
     Monte Carlo simulation involves simulating a 
sequence of data.  It provides a general and flexible 
way to price many different weather derivative 
structures, allowing the use of models that 
incorporate: 
• Seasonal patterns; 
• Forecasts; 
• Mean-reversion behaviour; 
• Extreme events; 
• Jumps; 
• Changing volatility. 
     A simple example of Monte Carlo modelling 
(after Dischell, 1999) is now presented.  Where: 

a, b and c are constants; 
T(n+1)=projected temperature  for  day n+1; 

T(n)=previously projected temperature for  day n; 
M(n+1)=mean temperature for projected day n+1; 
Ch(n,n+1)=random change from day n to day n+1; 

the following first-order recurrence relationship is 
employed to des cribe the evolution of a 
temperature sequence: 

T(n+1) = aT(n) + bM(n+1) + cCh(n,n+1) 

6.  EVALUATING A 38°C CALL 

     Our second illustrative example is that of a 38°C 
call option.  This example applies to the case when 
a temperature of at least 38°C has been forecast.        
Firstly, let us define our weather derivative contract 
thus:  

• Location: Melbourne 
• Type of asset: Temperature (°C ) 
• Strike: 38°C 
• Expiry: Tomorrow 
• Notional: $100 per degree above 38°C 

 

     If, at the expiry of a call option contract (that is, 
tomorrow), the actual maximum temperature is 
greater than the strike (that is, 38°C), the seller of 
the option pays the buyer $100 for each 1°C it is 
above 38°C.  This is illustrated in the pay-off 
diagram at Figure 2. 
     We now determine the price of our call option 
contract by employing historical simulation of the 
outcomes. We note that between 1960 and 2000, 
there were 114 forecasts of at least 38°C. The 
distribution of historical outcomes is presented in 
the graphic at Figure 3.  From the data presented in 
Figure 3, it may be seen that the contribution from  
the historical outcomes to the price of the 38°C call 
option contract are: 

• 1x44°C yields $(44-38)x1x100=$600 
• 2x43°C yields $(43-38)x2x100=$1000 
• 6x42°C yields $(42-38)x6x100=$2400 
• 13x41°C yields $(41-38)x13x100=$3900 
• 15x40°C yields $(40-38)x15x100=$3000 
• 16x39°C yields $(39-38)x16x100=$1600 
• The other 61 cases (38°C or below) yield 

nothing  
 
...leading to a total contribution of $12500, and an 
average contribution over the 114 cases of $110 
     So, $110 is the "fair value" price of our call 
option.  In order to make a profit, the seller would 
need to negotiate a price in excess of the "fair 
value" $110. 

7. EVALUATING A DAILY RAINFALL 
RANGE 3 CALL 

     Our third illustrative example is that of a Daily 
Rainfall Range 3 call option .  This example applies 
to the case when a rainfall range of at least range 3 
has been forecast.  Firstly, let us define our 
weather derivative contract thus:  

• Location: Melbourne  
• Type of asset: Rainfall (range)  
• Strike: Range 3  
• Expiry: Tomorrow  
• Notional: $100 per rainfall range above 

range 3  
where:  

• rainfall range 0 = nil  
• rainfall range 1 = 0.1 mm to 2.5 mm  
• rainfall range 2 = 2.6 mm to 5 mm  
• rainfall range 3 = 5.1 mm to 10 mm  
• rainfall range 4 = 10.1 mm to 20 mm  
• rainfall range 5 = 20.1 mm to 40 mm  
• rainfall range 6 = 40.1 mm to 80 mm 
• rainfall range 7 = more than 80 mm  



     If, at the expiry of a call option contract (that is, 
tomorrow), the actual rainfall range is greater than 
the strike (that is, range 3), the seller of the option 
pays the buyer $100 for each rainfall range it is 
above range 3.  This is illustrated in the pay-off 
diagram at Figure 4. 
     We now determine the price of our call option 
contract by employing historical simulation of the 
outcomes (Figure 5). 
     We note that between 1982 and 1999, there 
were 244 forecasts of at least range 3. The 
distribution of historical outcomes is presented in 
the graphic at Figure 5. From the data presented in 
Figure 5, it may be seen that the contribution from  
the historical outcomes to the price of the Rainfall 
Range 3 call option contract are  

• 3xrange 6 yields $(6-3)x3x100=$900 
• 20xrange 5 yields $(5-3)x20x100=$4000 
• 52xrange 4 yields $(4-3)x52x100 = $5200 
• The other 169 cases (range 3 or below) 

yield nothing 
 
...leading to a total contribution of $10100, and an 
average contribution over the 244 cases of $41  
So, $41 is the price of our call option. 
8. PUT OPTIONS 

     In order to explain the operation of put options, 
our fourth illustrative example is that of a Cooling 
Degree Day put option. A put option contract gives 
the holder the right to sell (that is, to "put") from the 
seller of the put option, a quantity of a particular 
commodity on or before a certain date at a certain 
price.   
     Before proceeding, let us refer to our basic text 
on options " (Cox and Rubinstein,  1985) in order to 
develop a more complete understanding of the 
meaning of the term "put option".  They define a put 
option as: 

A contract giving its owner the right to sell: 
-a fixed number of shares (1000 shares in 

Australia) 
-of a specified common stock (known as the 

underlying security) 
-at a fixed price (known as the strike price) 

-at any time on or before a given date (known as 
the expiry date). 

     They note that if a put is exercised, the complete 
transaction involves an initial exchange of: 

-put price from the buyer to the seller 
-put option from the seller to the buyer 

and a subsequent exchange of: 

-common stock and put option from the buyer to the 
seller 

-strike price from the seller to the buyer 

     For example, a TELSTRA $7.25 December put 
option bought at the close of trading on August 11, 
2000, when TELSTRA shares were trading at 
$7.12, would have cost $0.49 a share (Australian 
Financial Review, 14 August 2000).  This call gave 
the buyer the right to sell 1000 TELSTRA  shares 
for $7.25 per share at any time until the end of 
December, 2000.  On any trading day until the 
expiry date, the buyer can do one of three things: 

-sell the put back at its concurrent price, thereby 
cancelling the position 

-exercise the put by selling 1000 shares in return 
for $7250.00 

-retain the put and do nothing 

 
     On the expiry date the third alternative is 
equivalent to permitting the put to expire. 
     Suppose that, on the expiry date, TELSTRA 
shares were $8.00.  The buyer, or holder, of the 
option has the right to sell 1000 shares for $7.25 
each.  The holder may exercise that right. In this 
circumstance, however, the holder would obviously 
not choose to exercise the option.  Furthermore, 
the value of the option would be zero, so the holder 
would not have the opportunity to sell it.  In this 
circumstance, the holder would "do nothing". 
     Alternatively, suppose that, on the expiry date, 
TELSTRA shares were $6.00.  The holder has the 
right to sell 1000 shares for $7.25 each. The holder 
may exercise that right.  Alternatively, with the likely 
price of the option at $1.25, the holder may choose 
to sell it.  In this circumstance, however, the holder 
would not choose to "do nothing". 
     Let us now suppose that an electricity retailer 
holds such an option. That option places a 
minimum limit on the number of degree days during 
a season (the "strike") before the electricity 
company is entitled to sell a "parcel" of cooling 
degree days at a pre-determined price, regardless 
of the price of the electricity.  What this in effect 
means is that if, at the expiry of the contract, the 
actual number of Cooling Degree Days is less than 
the strike price, the seller of the option pays the 
buyer a certain amount.  This could compensate 
the retailer for weak sales on account of a cooler 
than normal summer, which suppresses demand.  



Firstly, let us define our weather derivative contract 
thus:  

• Location: Not specified in this case;  
• Type of asset: Cooling Degree Days;  
• Strike: 600 Cooling Degree Days;  
• Expiry: Not specified in this case; 
• Notional: $100 per Cooling Degree Day  

below 600.      
     This is illustrated in the pay-off diagram at 
Figure 6.  In the case illustrated, suppose, for 
example, that the accumulated Cooling Degree 
Days at the expiry of the option equals 300.  The 
"pay-off" is then $(600-300)x100=$30000. 

9. EVALUATING AN ECHUCA MONTHLY 
RAINFALL DECILE 4 PUT 

     Our fifth illustrative example is that of a Monthly 
Rainfall  Decile 4 put option.  This example applies 
to the case when the preceding month's Southern 
Oscillation Index (SOI) is Decile 1, 2 or 3, i.e. -4.7 
or less.  Firstly, let us define our weather derivative 
contract thus: 

• Location: Echuca (some 200 km north of 
Melbourne) 

• Type of asset: October Rainfall (Decile) 
• Strike: Decile 4 
• Expiry: October 
• Notional: $100 per Decile below Decile 4  

 
     If, at the expiration of a put option contract (that 
is, October), the actual Rainfall is less than the 
strike price (that is, Decile 4), the seller of the 
option pays the buyer $100 for each Decile that it is 
below Decile 4.  This is illustrated in the pay-off 
diagram at Figure 7. 
     We now determine the price of our put option 
contract by employing historical simulation of the 
outcomes. We note that, between 1876 and 1999, 
there were 119 Octobers with rainfall records, of 
which 44 were preceded by months with an SOI of 
Decile 1, 2 or 3. The distribution of historical 
outcomes is presented in the graphic at Figure 8. 
     From the data presented in Figure 8, it may be 
seen that the contributions from the historical 
outcomes to the price of the Decile 4 put option 
contract are  

• 9xDecile 1 yields $(4-1)x9x100=$2700 
• 6xDecile 2 yields $(4-2)x6x100=$1200 
• 4xDecile 3 yields $(4-3)x4x100=$400 
• The other 25 cases (Decile 4 or above) 

contribute nothing  
...leading to a total contribution of $4300, and an 
average contribution over the 44 cases of $98  

So, $98 is the price of our put option. 

10. EVALUATING A FORECAST 
TEMPERATURE ERROR PUT   

     Our sixth illustrative example is that of a  
Forecast Temperature Error put option.  This 
example applies to the case when a temperature of 
at least 38°C has been forecast.  Firstly, let us 
define our weather derivative contract thus:  

• Location: Melbourne 
• Type of asset: Forecast error (°C)                

            - Error is defined as (forecast temperature 
minus observed temperature) 

• Strike: 0°C 
• Expiry: Tomorrow 
• Notional: $100 per degree below 0°C 

     If, at the expiration of a put option contract (that 
is, tomorrow), the actual forecast temperature error 
is less than the strike price (that is, 0°C), the seller 
of the option pays the buyer $100 for each 1°C it is 
below 0°C.  Another way of describing this is to say 
that the buyer is paid $100 for each 1°C that the 
forecast under-estimates the maximum 
temperature.  
     This allows an electricity retailer, for example, to 
firstly enter into an agreement to sell electricity on 
the next day, at a price determined by the expected 
high temperature (for example, over 38°C).  If the 
retailer then purchases the put option described 
above, protection is gained should the temperature 
the next day be higher than forecast leading to 
even higher electricity prices.  
     The historical simulation technique illustrated 
earlier is then applied again to our 40-year data 
base of forecast and observed temperatures. This 
yields a suggested price of $67 for our put option.  
     We may ask:  

• Is the error in the forecast for tomorrow's 
temperature related to the error in the 
forecast that was issued for today?  

• Should this be taken into account when 
determining the price of the put option?  

     Interestingly, the answer is "Yes" to both 
questions:  

• Analys is of the data shows that, when very 
high temperatures are forecast, the sign of 
the error in tomorrow's forecast is more 
likely to be of the same sign as the error in 
today's forecast (than by "chance").  

• This leads to a suggested put option price 
of $41, if today's temperature has been 
over-estimated, and a suggested put 
option price of $75, if today's temperature 



has been under-estimated.  The reason 
why the put option price should be greater 
if today's temperature was under-
estimated is illustrated in Figure 9, which 
shows that, in such circumstances, the 
chances of tomorrow's temperature also 
being under-estimated are greater (40% 
as against 23%). 

     We have previously shown that when the 
historical simulation technique is applied to our data 
base of forecast and observed temperatures, this 
yields a (preliminary) suggested price of $67, for 
our put option. However, we have shown that the 
error in the forecast that was issued for today 
should be taken into account when determining the 
price.  We may now ask:  

• Is the error in the forecast for tomorrow's 
temperature related to today's synoptic 
weather pattern?  

• Should this also be taken into account 
when determining the price of the put 
option?  

     Interestingly, the answer is (once again) "Yes" to 
both questions. To illustrate:  

• Analysis of the data shows that, when very 
high temperatures are forecast, and 
today's synoptic weather pattern is 
moderate anticyclonic and NNE (Treloar 
and Stern, 1993; Stern, 1999a) tomorrow's 
forecast is more likely to be an under-
estimate than if today's synoptic weather 
pattern had been strong anticyclonic and 
NNE.  

• This leads to a suggested put option price 
of $47, if today's synoptic weather pattern 
is strong anticyclonic and NNE, and a 
suggested put option price of $77, if 
today's synoptic weather pattern is 
moderate anticyclonic and NNE.  

     It may be seen, therefore, that both the 
preceding error and the preceding synoptic pattern 
have an impact upon the "fair value" of the option.  
More sophisticated analyses could enable the 
relative effects of both to be compared and 
combined. 
     Interestingly, Stern (1996b) also demonstrated 
that relationships exist between tomorrow's forecast 
error, today's forecast error and synoptic pattern. 
11. PRICING OTHER DERIVATIVES 

     Sutton's (1951) statement on the resemblance 
between meteorology and economics, which was 

quoted in Stern's (1992) paper, is worthy of 
repetition here: 
     "Both deal fundamentally with the problem of 
energy transformations and distribution - in 
economics, the transformation of labour into goods 
and their subsequent exchange and distribution; in 
meteorology, transformation and distribution of the 
energy received from the sun.  Both systems are 
subject to extremely capricious external influences". 
     One should, therefore, not be surprised if the 
modelling and pricing of weather derivatives 
eventually leads to improved techniques for the 
pricing of other derivatives.  Indeed, the following 
analysis reports on progress towards that end. 
     We have previously observed that a model, that 
is frequently applied to the modelling of financial 
market variables and their derivatives, is one 
developed by Black and Scholes (1973). 
     We have also observed that the Black and 
Scholes model has deficiencies when applied to 
weather variables.  For this reason, it has been 
preferred to employ historical simulation and/or 
Monte Carlo techniques when modelling weather 
variables (and this paper's focus has been largely 
on historical simulation). 
     Notwithstanding the general use of Black and 
Scholes in the modelling of financial market 
derivatives, some aspects of the Monte Carlo 
approach to the modelling of weather derivatives 
(e.g. mean reversion and jumps) may be 
appropriate to financial derivatives.  To test this 
proposition, the following experiment was designed:  

• Australian stock price data (for the 25 
leading stocks) were extracted for an 18 
month period (March 1999 to August 
2000), sequences of at least 5 
consecutive falls (or rises) being noted      
(there were 249 such sequences during 
that period). 

• Dates when the sequences reversed were 
also noted, and it was assumed that on 
the reversal date an investor bought in the 
wake of a fall sequence, and short-sold in 
the wake of a rise sequence.   

• It was assumed that the investor closed 
positions each time an opposite sequence 
was reversed. 

     The outcomes of the experiment support the 
proposition that mean reversion and jumps need to 
be incorporated into the modelling of stock price 
derivatives. 
     Firstly, to illus trate the operation of mean 
reversion, note that:  



• The average (mean) return on all 249 
sequences was +4.51% with a standard 
deviation of 12.15%; 

• This mean is different from zero at the 
0.1% level of significance, the above zero 
return reflecting the operation of mean 
reversion (if it wasn't operating, the 
average return would be zero);  

• This would be particularly important in the 
pricing of American style options where, 
because of the flexibility about when 
positions may be opened and closed, the 
operation of mean reversion could 
dramatically reduce (or increase) the value 
of the option over that which would be 
suggested by Black and Scholes;  

• This would be also important in the pricing 
of European style options, although to a 
lesser degree, because of the lack of 
flexibility about when positions may be 
closed. 

     Secondly, to now illustrate the operation of 
jumps, refer to Figure 10, which presents the ratio: 

(frequency of returns from experiment) 
(frequency of returns if distribution normal) 

 
that ratio being presented in half Standard 
Deviation steps from the mean.  Observe that:  

• There was a much higher frequency of 
"extreme" returns than one would have 
expected had the distribution of returns 
been normally distributed; 

• Specifically, the high frequency of strongly 
negative returns (3.24 times what one 
would have expected) reflects cases 
where "news" has initiated a sudden re-
rating of a stock, so that a trend continues 
well beyond those trends associated with  
the  typical short-term variations in stock 
prices; 

• Conversely, the high frequency of strongly 
positive returns (1.94 times what one 
would have expected) reflects cases 
where stock prices have "over-shot" on 
"news", requiring a corrective trend that 
continues well beyond those trends 
associated with  the  typical short-term 
variations in stock prices; 

• This much higher frequency of "extreme" 
returns reflects the operation of jumps - if 
jumps weren't present, and the distribution 

was normal, each of the ratios would have 
been 1.0;  

• This would be important in the pricing of 
options, particularly American style 
options, where the operation of jumps 
could dramatically increase the value of 
the option over that which would be 
suggested by Black and Scholes; 

• The frequency of returns is unexpectedly 
high for the cases close to the average 
return, and unexpectedly low for the cases 
moderately distant from the average return 
- this occurs because the Standard 
Deviation has been inflated by the 
extreme cases.  Without the extreme 
cases, the most of the ratios should be 
closer to 1.0 - Figure 11 shows that they 
then, indeed, would be. 

     In conclusion, it is proposed that, in order to 
effectively take into account the processes of mean 
reversion and jumps when pricing options, that:  

• The frequency distribution of a range of 
stock price evolutions be developed using 
historical analogues to the recent stock 
price sequence;  

• For American style options, their price be 
determ ined on the basis of the "best" of a 
range of closing strategies  - current 
pricing practice results in only two closing 
strategies being considered, that of 
closing at option expiry and that of closing 
at dividend payment time. 

     This proposal to use the analogue retrieval 
approach is another illustration of the link between 
meteorology and economics. 
     Indeed, the current author's pioneering work 
(Stern, 1980; Stern, 1985) on the development of 
automated weather forecasting guidance using 
analogue retrieval techniques led to the first 
operational system employing the analogue 
statistics approach. 
     The reader is invited to see, for example, Dahni 
and Stern (1995), for a more recent report on that 
system's ongoing development.  

12. CONCLUDING REMARKS 

     A unique approach to the pricing of weather 
derivatives has been presented.  The approach 
utilises a combination of empirical data to price 
weather derivatives and has been illustrated by a 
range of examples. 
     The importance of forecast verification data and 
synoptic classification data in the process has been 



demonstrated.  This suggests that pricing theory 
may be employed to provide a measure of the 
value of a forecast prior to the event. 
     Finally, it has been shown that mean reversion 
and jumps, features of the temperature sequence 
so successfully applied in the Monte Carlo 
approach to the modelling of weather derivatives, 
should also be included in the modelling of other 
derivatives. 
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FIGURE 1 Pay-off chart for a Degree Day call. 
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FIGURE 2 Pay-off chart for a 38° call. 

 

1 2
0 1 0

2 2 1
3

7

1
5

14

7

12

6

13

16
1515

0

4
8

12
16

20
24

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Observed Temperature (Deg C)

Number
of

Cases

 
FIGURE 3 Historical outcomes for a 38°C call. 
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FIGURE 4 Pay-off chart for a Rainfall Range 3 call. 
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FIGURE 5 Historical outcomes for a Rainfall Range 3 call.  
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FIGURE 6 Pay-off chart for a Degree Day put. 
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FIGURE 7 Pay-off chart for a Decile 4 put. 
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FIGURE 8 Historical outcomes for a Decile 4 put. 
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FIGURE 9 Percentage (%) of errors no greater than the value shown for: 

(1) Cases when the sign of the error the previous day was +ve (squares); and, 
 (2) Cases when the sign of the error the previous day was -ve (diamonds). 
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FIGURE 10 The ratio: 

(frequency of returns from experiment)/   
(frequency of returns if distribution was normal) 
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FIGURE 11 The ratio (without extreme cases).  


