Developing overnight minimum temperature and daytime maximum temperature databases

Harvey Stern, John Cornall-Reilly, Patrizia McBride, Bureau of Meteorology, Australia

1. INTRODUCTION

Recently, the Bureau of Meteorology decided to take the minimum temperature between 6 pm and 9am as representing the "overnight" minimum temperature (OMIN), and the maximum temperature between 6am and 9pm as representing the "daytime" maximum temperature (DMAX).

However, some systems for automated weather forecast verification still source the standard "minimum temperature during the 24 hours to 9am" (9 amMIN) and the standard "maximum temperature during the 24 hours from 9am" (9amMAX). Such databases may include misleading OMINs and misleading DMAXs.

2. PURPOSE

Since 1990, the increasing number of automatic weather stations providing data at 1-minute intervals readily allows the establishment of OMIN and DMAX databases. The purpose of this paper is to show how to apply stratification and regression analysis to historical temperature data taken at 3-hourly intervals in order to establish reliable OMIN and DMAX databases.

3. EXAMPLES

3.1 Maximum temperature on 12-Jan-1982

For example, in Melbourne, on 12-Jan-1982, the 6am temperature was $32.2^{\circ} \mathrm{C}$, but the 9 amMAX was only $24.2^{\circ} \mathrm{C} .24 .2^{\circ} \mathrm{C}$ provides a misleading representation of the 12 -Jan-1982 DMAX, it likely to have been at, or slightly above, the 6am temperature of $32.2^{\circ} \mathrm{C}$.

During the 30-year period between 1979 and 2008 (10958 days) there are 77 cases where the current day's 6am temperature is above the 9amMAX. During the same period, there are another 40 cases where the current day's 6am temperature is at, or between $0.1^{\circ} \mathrm{C}$ and $0.5^{\circ} \mathrm{C}$ below, the 9amMAX.

In such circumstances, it may be suggested that the current day's 6am temperature provides a better estimate of DMAX than does 9amMAX. The data is stratified to exclude these cases, and regression analysis is applied to the remaining data to yield the following relationship which is then solved in all these cases, in order to yield, for these cases, an improved estimate of DMAX.

3.2 Minimum temperature on 3-Mar-1988

The lowest temperature recorded in the 24 hours to 9am 3-Mar-1988 was $15.6^{\circ} \mathrm{C}$ at 9am the previous morning. However, the temperatures recorded at 3 -hourly intervals between 6 pm the previous evening and 9am that day were $35.4^{\circ} \mathrm{C}-29.8^{\circ} \mathrm{C}-27.3^{\circ} \mathrm{C}-27.4^{\circ} \mathrm{C}-27.7^{\circ} \mathrm{C}-27.2^{\circ} \mathrm{C} .15 .6^{\circ} \mathrm{C}$ provides a misleading representation of the 3 -Mar-1988 OMIN, it likely to have been at, or slightly below, the lowest of the temperatures recorded at 3-hourly intervals between 6 pm the previous evening and 9am that day, which was $27.2^{\circ} \mathrm{C}$.

During the 30-year period between 1979 and 2008 there are 1319 cases where the $9 a m M I N$ equals the lowest of the previous day's 9am, Noon, and $3 p m$ temperatures. During the same period, there are another 1187 cases where the where the 9 amMIN is between $0.1{ }^{\circ} \mathrm{C}$ and $0.5^{\circ} \mathrm{C}$ above, the 9amMIN.

In such circumstances, it may be suggested that the lowest of the temperatures recorded at 3-hourly intervals between 6pm the previous evening and 9am that day provides a better estimate of DMIN than does gamMIN. The data is stratified to exclude these cases, and regression analysis is applied to the remaining data to yield the following relationship which is then solved in all these cases, in order to yield, for these cases, an improved estimate of DMIN.

3.3 Maximum temperature on 6-Dec-1990

On 6-Dec-1990, the temperatures recorded at 3-hourly intervals between 6am on that day and $9 p m$ that evening were $20.4^{\circ} \mathrm{C}-25.0^{\circ} \mathrm{C}-24.5^{\circ} \mathrm{C}-25.0^{\circ} \mathrm{C}-25.6^{\circ} \mathrm{C}-$ $22.3^{\circ} \mathrm{C}$. However, the 9amMAX was $33.2^{\circ} \mathrm{C}$ at 9am the following morning. $33.2^{\circ} \mathrm{C}$ provides a misleading representation of the 6-Dec-1990 DMAX, it likely to have been at, or slightly above, the highest of the temperatures recorded at 3 -hourly intervals between 6am that morning and 9pm that evening, which was $25.6^{\circ} \mathrm{C}$.

During the 30-year period between 1979 and 2008 there are 77 cases where the 9amMAX equals the highest of the next day's Midnight, 3am, 6am, and 9am temperatures. During the same period, there are another 119 cases where the where the 9 amMAX is between $0.1^{\circ} \mathrm{C}$ and $0.5^{\circ} \mathrm{C}$ below, the the highest of the next day's Midnight, 3am, 6am, and 9am temperatures.

In such circumstances, it may be suggested that the highest of the temperatures recorded at 3-hourly intervals between 6am that morning and 9 pm that evening provides a better estimate of DMAX than does 9amMAX. The data is stratified to exclude these cases, and regression analysis is applied to the remaining data to yield the following relationship (which, is then solved in all these cases, in order to yield, for these cases, an improved estimate of DMAX

