

## USING A KNOWLEDGE BASED FORECASTING SYSTEM TO ESTABLISH THE LIMITS OF PREDICTABILITY

Harvey Stern\*

Bureau of Meteorology, Melbourne, Vic., 3001, Australia

*"Timely and accurate high-impact weather forecasts are those that can be translated into specific and decisive actions to produce beneficial societal and economic outcomes. They are typically associated with forecasts of weather hazards ... (and) also encompass meteorological conditions affecting air quality, periods of anomalous high/low temperature and drought, and non-extreme weather with high societal/economic impact..."*

*The WMO (World Meteorological Organisation) weather research programme, THORPEX (The Observation, Research and Predictability Experiment), responds to the challenges associated with accelerating improvements in the skill of high-impact weather forecasts that (firstly) reduce and mitigate weather disasters and (secondly) increase the benefits provided by improved forecasts... (because) the term "high-impact weather forecasts" also emphasizes (those) societal and economic benefits resulting from advances in meteorological science..."*

*THORPEX is a global atmospheric research programme involving international collaboration between:*

- academic researchers;
- national meteorological and hydrological services;
- international organizations and initiatives;
- users of forecasts...

*In order to fully realize improvements in high-impact weather forecasts, the forecasting system itself needs to be responsive to societal/economic impacts. Recent advances demonstrate that it is now possible to alter the whole forecasting system depending on the precise requirements of a given user or set of users..."*

*THORPEX addresses the influence of sub-seasonal time-scales on high-impact forecasts out to two weeks, and thereby aspires to bridge the "middle ground" between medium range weather forecasting and climate prediction..." (Shapiro and Thorpe, 2004).*

*The work presented in the current paper may be viewed as a small contribution towards the realisation of that aspiration.*

### 1. INTRODUCTION

Weather forecasts provided to the public are steadily improving (Figure 1(a)) and, during the late 1990s, Stern (1998, 1999) presented the results of an experiment to establish the limits of that predictability. The experiment involved verifying a set of forecasts for Melbourne (Australia) out to 14 days. These forecasts were based upon a subjective interpretation of the ensemble mean output of the NCEP<sup>1</sup> Numerical Weather Prediction (NWP) model.

The verification data suggested that, during the late 1990s, routinely providing or utilising day-to-day forecasts beyond day 4 would have been inappropriate. However, the data also suggested that it might have been possible to provide some useful information about the likely weather up to about a week in advance for some elements and in some situations.

Shortly after Stern's (1998) presentation, in April of that year, the Bureau of Meteorology's (BoM) Victorian Regional Forecasting Centre (RFC) commenced a formal (official) trial of day-to-day forecasts for Melbourne out to day 7.

There have been considerable advances in NWP modelling since then, and also in associated techniques for statistically interpreting the NWP model output utilising objective methods. Stern (2004a) has recently demonstrated that the skill displayed by the trial maximum temperature forecasts is superior to that of climatology (even) at day 7 (Figure 1(b)).

In the light of the skill displayed by the official trial forecasts, the BoM recently commenced routinely issuing a forecast out to day 7 to the public each evening. Predictions for days 5, 6, and 7 are couched in general terms.

### 2. BACKGROUND

The BoM routinely issues its three-month Seasonal Climate Outlook (SCO) to the public on about the middle day of each month prior. To illustrate, the September to November 2004 outlook (Figure 2) was issued on 17 August, 2004.

The work of Lorenz (1963, 1969a&b, 1993) suggests that there is a 15-day limit to day-to-day

\*Corresponding author address: Harvey Stern, Victorian Regional Office, Bureau of Meteorology, Box 1636M, Melbourne, 3001, Australia; e-mail: [H.Stern@bom.gov.au](mailto:H.Stern@bom.gov.au)

<sup>1</sup>National Center for Environmental Prediction

predictability of the atmosphere. Furthermore, ongoing increases in the accuracy of NWP model output continue to be evident. It was, therefore, considered appropriate to now repeat Stern's (1998, 1999) experiment.

This was done to enable assessment of whether or not there may now be scientific justification to prepare day-to-day forecasts for the day 8 to day 15 period, with a view to providing a "link" between the day 1 to day 7 forecast and the three-month SCO.

Incidentally, Stern (1999) also investigated whether, even though the day 5 to day 14 forecasts for the *individual* days displayed little skill at that time, they might provide an indication of *overall* weather conditions during the day 5 to day 14 period.

Analysis of the data revealed that there was some basis for an affirmative response to this question. However, the relationship between the forecast weather and observed weather was not strong (level of significance between 0.2% and 13%).

Interestingly, with increases in the accuracy of NWP model output, the South African Weather Service now provides such a product (Figure 3).

### 3. A LONG RANGE GLOBAL FORECASTING SYSTEM

RFC forecaster Stuart Coombs recently alerted the author to anecdotal evidence that the output of the NOAA<sup>2</sup> GFSI<sup>3</sup> NWP Model displayed considerable skill, and that, on occasions, it had predicted significant events even towards the end of the forecast period (day 16).

This GFSI output includes forecast data every 12 hours from forecast hour 192 (day 8) to 384 (day 16) on a 2.5 degree latitude/longitude grid covering the globe. The data is updated 4 times per day. An illustration of the output of the system is presented at Figure 4, and, for a more complete view, one may refer to:

<http://www.arl.noaa.gov/ready/metdata.html>.

The current paper presents a preliminary study of the skill displayed by forecasts derived from 100 twice-daily "runs" of the GFSI model (base analyses between 12UTC on 5 August, 2004, and 00UTC on 13 November, 2004).

### 4. INTERPRETING MODEL OUTPUT IN TERMS OF LOCAL WEATHER

Over recent years, Stern (2002, 2003, 2004b&c) has been involved in the development of a knowledge based weather forecasting system. Illustrations of components of its output are presented at Figures 5

and 6; and, for a more complete view of the system, one may refer to:

<http://www.weather-climate.com/knowledge.html>.

The knowledge based forecasting system was utilised to *objectively* interpret the output of the GFSI model statistically in terms of local weather at Melbourne (maximum temperature, minimum temperature, probability of precipitation, and amount of precipitation) in order to rigorously establish current limits of predictability. By contrast, Stern's (1998, 1999) experiment was based upon *subjective* interpretation of model output.

### 5. CONSISTENCY OF OUTPUT

Examination of the output of "runs" of the GFSI model reveals a modest, but useful, level of consistency of output from one "run" to the next. Indeed, there were a number of occasions when consistent advance notice was given by the GFSI model to the prediction of a number of unusual events. For example, Figure 7 shows that the warm day on 20 September, 2004, was anticipated well in advance by the GFSI model, as interpreted by the knowledge based system.

However, there is some jerkiness in the forecasts from one "run" to the next, and this would render them unsatisfactory, were a decision made to issue the forecasts to the public.

One approach to address this "jerkiness" may be to regard the individual forecasts as members of an ensemble. For example, the output of the GFSI model's four most recent runs may then be averaged.

To illustrate, the output of the GFSI model's 850 hPa temperature and 700 hPa relative humidity are among the data that are input into the knowledge based system in order to obtain a weather forecast.

Firstly, regarding the 850 hPa temperature, Figure 8(a) depicts the mean and standard deviation (uncertainty) of the Melbourne 850 hPa temperature forecast by the 20 October, 2004, "runs" - 00UTC, 06UTC, 12UTC and 18UTC. It also shows a Line of Best-Fit based on the standard deviation (sd) data, which suggests that there is an overall increase in uncertainty associated with the forecasts of 850 hPa temperature as one moves from day 1 (Oct-21) to day 16 (Nov-5).

Secondly, regarding the 700 hPa relative humidity, Figure 8(b) depicts the mean and standard deviation (uncertainty) of the Melbourne 700 hPa relative humidity forecast by the 20 October, 2004, "runs" - 00UTC, 06UTC, 12UTC and 18UTC. It also shows a Line of Best-Fit based on the standard deviation (sd) data, which suggests that there is an overall increase in uncertainty associated with the forecasts of relative humidity as one moves from day 1 (Oct-21) to day 16 (Nov-5).

<sup>2</sup>National Oceanic and Atmospheric Administration

<sup>3</sup>Global Forecasting System long range

Another approach to address the "jerkiness" may be to average the most recent interpretations of the output of the GFSI<sub>r</sub> model (instead of the output, itself). Figure 8(c) demonstrates how for Day 5 and beyond, such an approach might lead to an improvement in the forecasts of maximum temperature.

To illustrate the skill displayed by the maximum temperature forecasts close to the event, Figure 9(a) depicts the day-to-day fluctuations in the departure from normal of the day 8 and day 8.5 forecast and observed maximum temperatures, whilst Figure 9(b) compares departures from normal of observed and forecast maximum temperatures 8 and 8.5 days in advance.

## 6. INDEPENDENCE OF FORECAST DATA SETS

There are 22 forecast data sets, each comprising predictions of:

- Minimum temperature (*Min*);
- Maximum temperature (*Max*);
- Quantity of Precipitation Forecast (*QPF*); and,
- Probability of Precipitation (*PoP*).

Four of these data sets correspond to the official BoM forecasts for 1, 2, 3, and 4 days ahead.

Three of these data sets correspond to official trial forecasts for 5, 6, and 7 days ahead.

Fifteen of these data sets correspond to the forecasts based on the interpretation of the output of the GFSI<sub>r</sub> NWP model for 8, 8.5, 9, 9.5 ... 15 days ahead.

However, the elements of each of these 22 forecast data sets are not truly independent. This lack of independence arises from the fact that weather patterns often persist for several days.

Now, Figure 10 shows that the overall % variance explained by the *Max*, *Min*, *QPF* and *PoP* Equations:

$$(\text{Observed departure from normal}^4) =$$

$$a + b(\text{Observed departure from normal a number of days before})$$

$$\text{where } a \text{ and } b \text{ are constants} \quad (1)$$

---

<sup>4</sup>In this context, the *QPF* is regarded as  $\sqrt{(\text{forecast Precipitation Amount})}$ , the normal *QPF* is regarded as the  $\sqrt{(\text{mean daily precipitation for a particular month})}$ , whilst the observed *Precipitation Amount* is either  $\sqrt{(\text{observed precipitation})}$ , if precipitation is observed, or 0 (if precipitation is not observed). Furthermore, in this context, the normal *PoP* is regarded as the monthly proportion of days with precipitation, whilst the observed *PoP* is either 100%, if precipitation is observed, or 0% (if precipitation is not observed).

suggests that persistence of weather patterns is confined largely to day 1.

One may, therefore, deduce that consecutive data elements are not truly independent, whilst beyond day 1, the data elements do appear to be fairly independent<sup>5</sup>.

The numbers of degrees of freedom utilised to establish confidence limits in the analyses that follow are all, therefore, reduced to half of what they would have been, had all the data elements been truly independent.

## 7. ANALYSIS OF RESULTS

### 7.1 Minimum temperature

Figure 11 depicts three best-fit 2<sup>nd</sup> order polynomial curves, about the Regression Coefficients 'b' in the Equations derived on data from the 22 *Min* forecast data sets:

$$\begin{aligned} &(\text{Observed } \text{Min} \text{ departure from normal}) = \\ &a + b(\text{Forecast } \text{Min} \text{ departure from normal a number of days in advance}) \end{aligned} \quad (2)$$

where a and b are constants

The three curves are:

- Top curve: Regression coefficients 'b';
- Middle curve: 75% lower confidence limit for regression coefficient 'b'; and,
- Bottom curve: 95% lower confidence limit for regression coefficient 'b'.

The curves show that:

- It is more likely than not that there is skill at forecasting minimum temperature out to 15 days ahead;
- It is three times more likely than not that there is skill at forecasting minimum temperature out to 14 days ahead; and,
- One can be 95% confident that there is skill at forecasting minimum temperature out to 11 days ahead.

The 'b's represent the proportion of the forecast departure from normal to utilise, should one wish to achieve optimal forecast skill. Hence, by way of example, for forecasts for 8 days ahead, although the significance of the skill is high (at the 95% level), the magnitude of that skill is not - from the 2<sup>nd</sup> order polynomial for coefficient 'b' one observes that the proportion of the forecast departure from normal to

---

<sup>5</sup> However, a cycle of diminishing amplitude appears to be present with weak negative correlation evident with data from days 3 to 7, weak positive correlation from days 8 to 10, and weak negative correlation from days 11 to 15.

utilise is only about 0.45. To illustrate, should the prediction for day 8 be for a minimum temperature that is 10 deg C above normal, for optimal forecast skill one should predict a minimum temperature that is 4.5 deg C above normal.

## 7.2 Maximum temperature

Figure 12 depicts three best-fit 2<sup>nd</sup> order polynomial curves, about the Regression Coefficients 'b' in the Equations derived on data from the 22 Max forecast data sets:

(Observed Max departure from normal) =  
 $a + b(\text{Forecast Max departure from normal a number of days in advance})$   
 where a and b are constants (3)

The three curves are:

- Top curve: Regression coefficients 'b';
- Middle curve: 75% lower confidence limit for regression coefficient 'b'; and,
- Bottom curve: 95% lower confidence limit for regression coefficient 'b'.

The curves show that:

- It is more likely than not that there is skill at forecasting maximum temperature out to 15 days ahead;
- It is even three times more likely than not that there is skill at forecasting maximum temperature out to 15 days ahead; and,
- One can be 95% confident that there is skill at forecasting maximum temperature out to 12 days ahead.

As with the case for minimum temperature, the 'b's represent the proportion of the forecast departure from normal to utilise, should one wish to achieve optimal forecast skill.

Figure 12 shows that, for maximum temperature forecasts for 8 days ahead, the optimal proportion of forecast departure from normal to utilise (about 0.50) is slightly higher than the corresponding value for minimum temperature.

Furthermore, Figure 12 shows that the optimal proportion of forecast departure from normal to utilise for day 7 is about 0.55. This value is greater than the corresponding value derived by Stern (2004a) for day 7 (0.511) using 1998-2003 data from the official trial. One may interpret this to be suggesting that there has been an improvement in the accuracy of the official trial forecasts since the 1998-2003 period.

## 7.3 Quantitative Precipitation Forecast (QPF)

Figure 13 depicts three best-fit 2<sup>nd</sup> order polynomial curves, about the Regression Coefficients

'b' in the Equations derived on data from the 22 QPF forecast data sets:

(Observed Precipitation Amount departure from normal) =

$a + b(QPF \text{ departure from normal a number of days in advance})$

where a and b are constants (4)

The three curves are:

- Top curve: Regression coefficients 'b';
- Middle curve: 75% lower confidence limit for regression coefficient 'b'; and,
- Bottom curve: 95% lower confidence limit for regression coefficient 'b'.

The curves show that:

- It is more likely than not that there is skill at forecasting precipitation amount out to 11 days ahead;
- It is three times more likely than not that there is skill at forecasting precipitation amount out to 9 days ahead; and,
- One can be 95% confident that there is skill at forecasting precipitation amount out to 7 days ahead.

## 7.4 Probability of Precipitation (PoP)

Figure 14 depicts three best-fit 2<sup>nd</sup> order polynomial curves, about the Regression Coefficients 'b' in the Equations derived on data from the 22 PoP forecast data sets:

(Observed PoP departure from normal) =

$a + b(\text{Forecast PoP departure from normal a number of days in advance})$

where a and b are constants (5)

The three curves are:

- Top curve: Regression coefficients 'b';
- Middle curve: 75% lower confidence limit for regression coefficient 'b'; and,
- Bottom curve: 95% lower confidence limit for regression coefficient 'b'.

The curves show that:

- It is more likely than not that there is skill at forecasting PoP out to 12 days ahead;
- It is three times more likely than not that there is skill at forecasting PoP out to 10 days ahead; and,
- One can be 95% confident that there is skill at forecasting PoP out to 8 days ahead.

## 8. COMPARISON WITH BoM TRIAL OF FORECASTS OUT TO DAY 7

An analysis of the variance explained by the official BoM forecasts for 1, 2, 3, and 4 days ahead, and the official trial forecasts for 5, 6, and 7 days ahead, was carried out on 2000-2003 data. The results of this analysis were compared with a corresponding analysis of forecasts between 1 and 15 days ahead during the 100-day trial conducted in 2004.

Figure 15 depicts the percentage variance explained by the *Min*, *Max*, *QPF* and *PoP* components of the 2000-2003 and 2004 sets of forecasts (temperature and precipitation components combined).

*PoP* was not included in the depiction for 2000-2003 because *PoP* data was not available for that period. For this reason, a double weighting is given to the 2000-2003 *QPF* data in order that overall equal weighting be given to the temperature and precipitation components of the forecasts.

Figure 15 shows that the skill (as measured by the percentage variance explained) declines steadily from about 50% for Day 1, to about 15% for Day 7, and that the characteristics of that decline are similar for both the 2000-2003 and 2004 sets of forecasts (notwithstanding that they are not strictly comparable on account of the 2000-2003 *PoP* data not being available).

Figure 15 also shows that the skill displayed by the forecasts (for all lead times between Day 1 and Day 7) is slightly greater for the 2004 forecasts than for the 2000-2003 forecasts, reflecting the ongoing trend towards increasing forecast skill.

Figure 15 also shows that the skill continues to decline (albeit at a slower rate) from Day 7 to Day 10, at which point only 5% of the variance is explained. For forecasts from Day 10.5 to Day 15, the skill averages about 1.4%.

A legitimate question to ask is:

Is a forecast that explains only a small amount of the variance useful to a client?

The answer, in this era of active amelioration of weather-related risks, is "yes".

Provided the client is able to activate such risk reduction measures, even a low level of skill can be taken advantage of.

Figure 16 depicts the percentage variance explained by the temperature and precipitation components of the forecasts taken separately.

Figure 16 shows that the levels of skill displayed by both the temperature and precipitation components of the forecasts (for all lead times between Day 1 and Day 7) are slightly greater for the 2004 forecasts than for the 2000-2003 forecasts (reflecting the ongoing trend towards increasing forecast skill).

Figure 16 also shows that the skill of the temperature forecasts (as measured by the percentage variance explained) declines steadily from about 75% for Day 1, to about 20% for Day 7, and to about 8% for Day 10. For forecasts from Day 10.5 to Day 15, the skill averages 2.8%.

Figure 16 also shows that the skill of the precipitation forecasts (as measured by the percentage variance explained) declines steadily from about 30% for Day 1, to about 8% for Day 7. For forecasts from Day 8 to Day 10, the skill averages only 0.7%, whilst it is negligible (0.01%) from Day 10.5 to Day 15.

## 8. CONCLUSION

Analysis of the data suggests that application of the knowledge based system to the interpretation of the Global Forecasting System long range model output yields a set of day-to-day weather predictions that display a modest, but nevertheless potentially useful, level of skill, especially at predicting temperature.

This outcome appears to justify the emergence on the web of extended-period day-to-day forecasts.

Furthermore, even a modest level of forecast skill may be applied to financial market instruments, such as weather derivatives, in order to ameliorate weather-related risk. It may, therefore, be justifiable to prepare such forecasts with a view to using them to ameliorate that risk, and also with a view to providing a "link" between the short-term forecasts and the three-month Seasonal Climate Outlook.

The significance of the results presented herein is that, for the first time, we have emerging evidence there may now be skill out to Lorenz's (1963, 1969a&b, 1993) suggested 15-day limit of day-to-day predictability of the atmosphere. With this achievement within our grasp, a possible depiction of the future style of forecasts is given in Figure 17.

A system to generate the HTML code required to create a presentation of weather graphics, such as that which appears in Figure 17, is given at:

<http://www.weather-climate.com/graphicgenerator.html>

An example of the code produced by the weather graphic generator is given at Figure 18.

For an updated account of the work in progress readers may go to:

<http://www.weather-climate.com/ams2005lr.html>

**Acknowledgement.** To Stuart Coombs, of the Bureau of Meteorology's Regional Forecasting Centre (Victoria), who inspired this work, and to Robert Dahni and Terry Adair, of the Bureau of Meteorology's Data Management Group, for providing some historical forecast verification data.

## 9. REFERENCES

Lorenz, E. N., 1963: Deterministic, non-periodic flow. *J. Atmos. Sci.*, **20**, 130-41.

Lorenz, E. N., 1969a: Atmospheric predictability as revealed by naturally occurring analogues. *J. Atmos. Sci.*, **26**, 636-46.

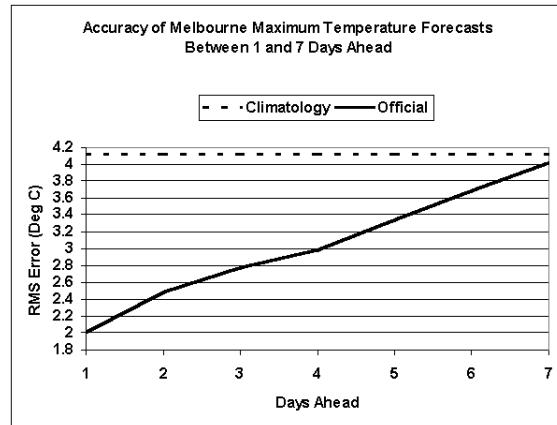
Lorenz, E. N., 1969b: The predictability of a flow which possesses many scales of motion. *Tellus*, **21**, 289-307.

Lorenz, E. N., 1993: The essence of chaos. *University of Washington Press*.

Shapiro, M. A. and Thorpe, A., 2004: THORPEX: A global atmospheric research programme for the beginning of the 21st century. *WMO Bulletin*, **54**, No.3, July 2004.

Stern, H., 1998: An experiment to establish the limits of our predictive capability. *14th Conference on Probability and Statistics / 16th Conference on Weather Forecasting and Analysis, Phoenix, Arizona, 11-16 Jan., 1998, Amer. Meteor. Soc.*

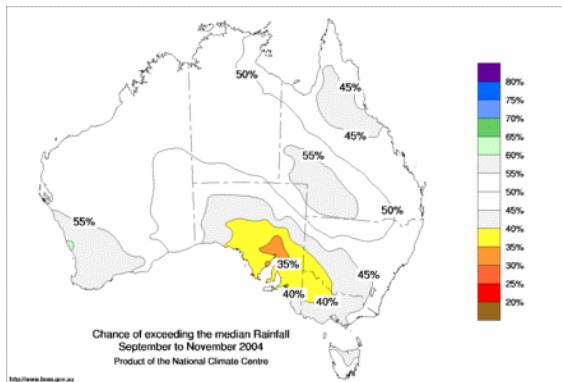
Stern, H., 1999: An experiment to establish the limits of our predictive capability for Melbourne. *Aust. Meteor. Mag.*, **48**, 159-167.


Stern, H., 2002: A knowledge-based system to generate internet weather forecasts. *18th Conference on Interactive Information and Processing Systems, Orlando, Florida, 13-17 Jan., 2002, Amer. Meteor. Soc.*

Stern, H., 2003: Progress on a knowledge-based internet forecasting system. *19th Conference on Interactive Information and Processing Systems, Long Beach, California, 9-13 Feb., 2003, Amer. Meteor. Soc.*

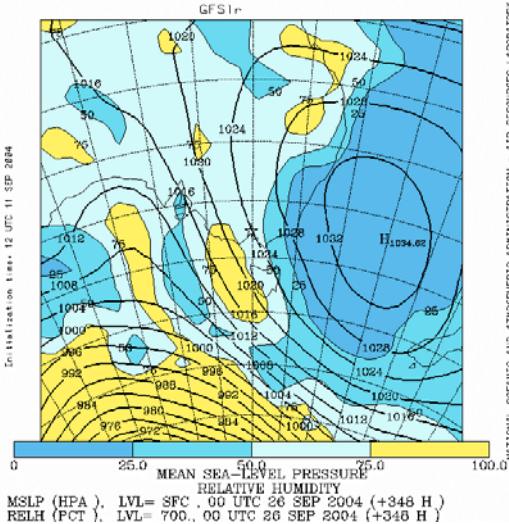
Stern, H., 2004a: Using verification data to improve forecasts. *Australian Meteorology and Oceanography Society 2004 Annual Conference, Brisbane, Queensland, Australia 5-9 Jul., 2004.*

Stern, H., 2004b: Incorporating an ensemble forecasting proxy into a knowledge based system. *20th Conference on Interactive Information and Processing Systems, Seattle, Washington, 11-15 Jan., 2004, Amer. Meteor. Soc.*


Stern, H., 2004c: Using a knowledge based system to predict thunderstorms. *International Conference on Storms, Storms Science to Disaster Mitigation, Brisbane, Queensland, Australia 5-9 Jul., 2004.*

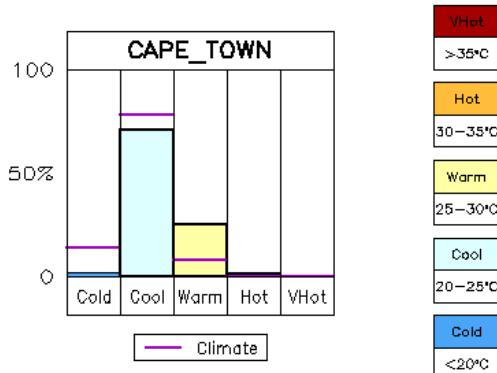


**Figure 1(a)** Long-term trend in accuracy of Melbourne maximum temperature forecasts 1961-2003, as measured by the percentage of forecasts within 2 deg C.



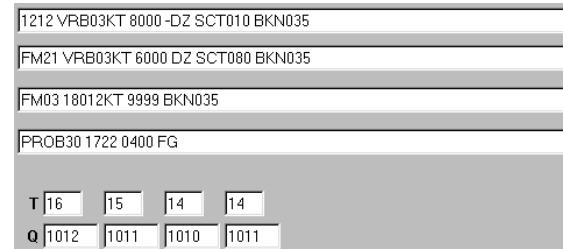

**Figure 1(b)** Accuracy of day 1 to day 7 Melbourne maximum temperature forecasts 1998-2003, as measured by the Root Mean Square (RMS) error (after Stern, 2004a).



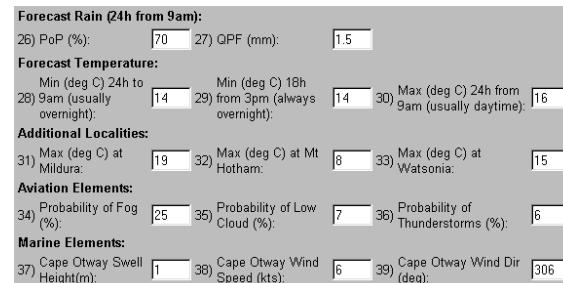

**Figure 2** Rainfall outlook for September to November 2004.

**NOAA Air Resources Laboratory**  
This product was produced by an Internet user on the NOAA Air Resources Laboratory's web site. See <http://www.arl.noaa.gov/ready/disclaim.html> for further information.

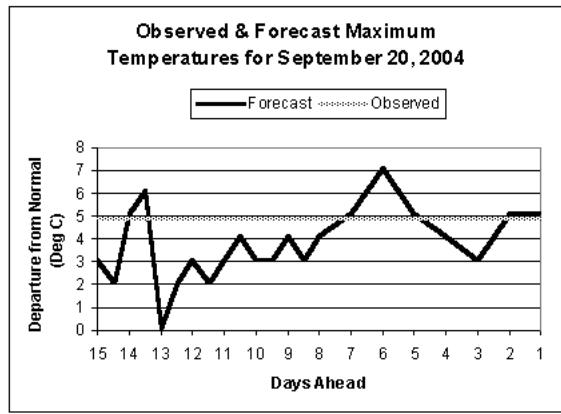



**Figure 4** Global Forecasting System long range (day 14.5) forecast of MSL Pressure and 700 hPa Relative Humidity for 00 UTC 26 September, 2004.

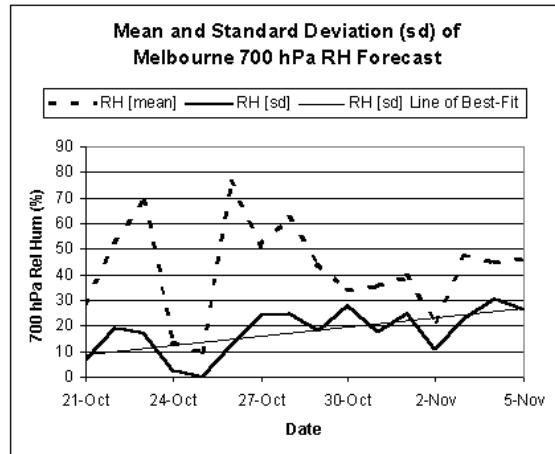
**Probability distribution of Maximum Temperatures during the period 2 Nov 2004 to 8 Nov 2004**



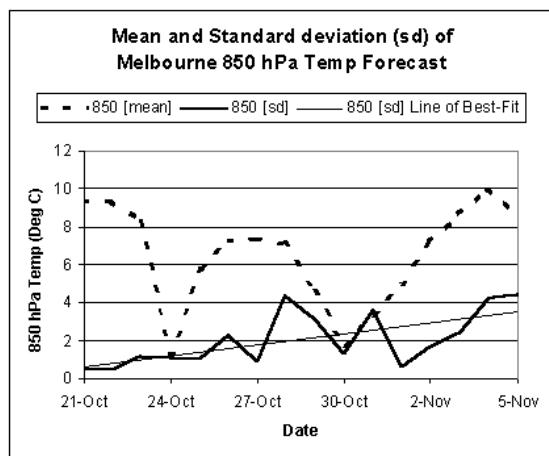

**Figure 3** Probability distribution of Week 2 Cape Town maximum temperature, showing an enhanced likelihood (compared with climatology) of warm weather, and a diminished likelihood (compared with climatology) of cool to cold weather. Source:


[http://www.weathersa.co.za/fcastProducts/ExtendedRange/images/CAPE\\_TOWN\\_TX.gif](http://www.weathersa.co.za/fcastProducts/ExtendedRange/images/CAPE_TOWN_TX.gif)  
(as at 04UTC, 27 October, 2004).

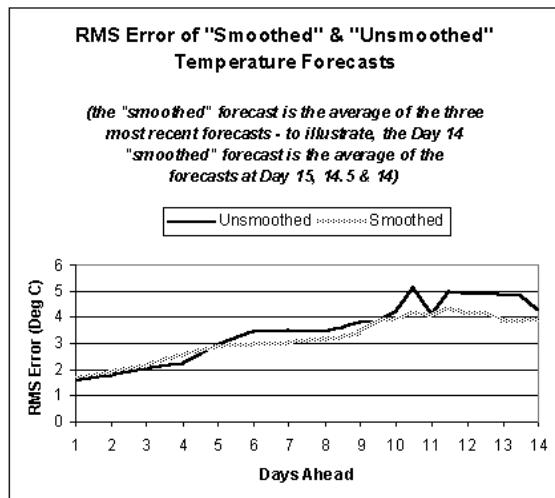



**Figure 5** Illustration of the Terminal Aerodrome Forecast (TAF) component of the output of the knowledge based system.

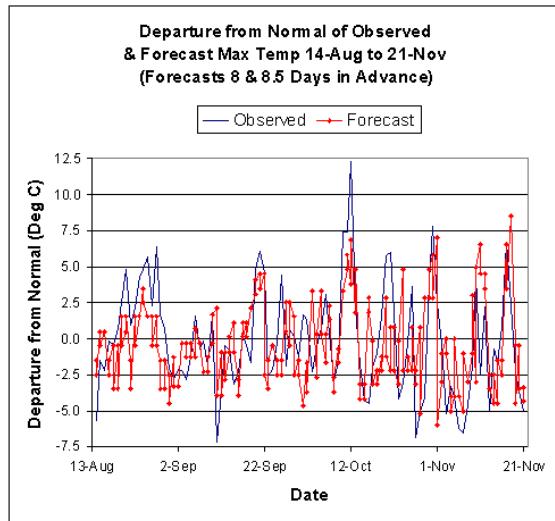



**Figure 6** Illustration of some quantitative components of the output of the knowledge based system.

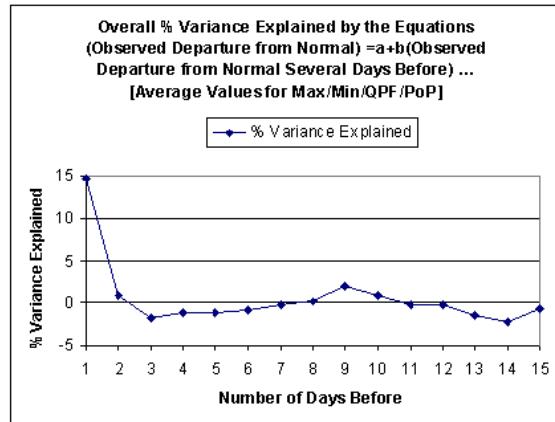



**Figure 7** Observed and forecast maximum temperatures for 20 September, 2004 (GFS1r based forecasts made every 12 hours between 15 and 8 days ahead; forecasts between 7 days and 1 day ahead are RFC forecasts).

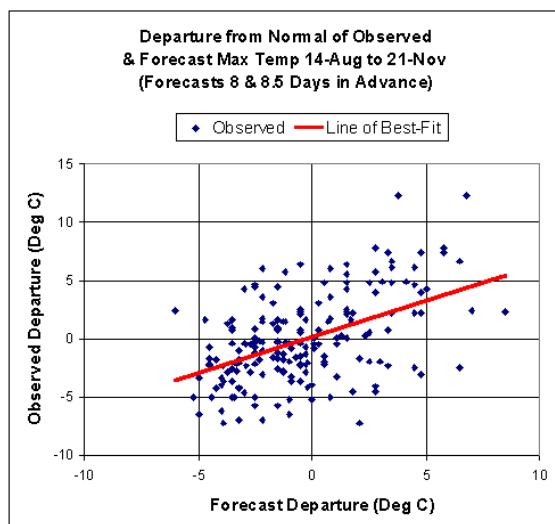



**Figure 8(b)** Mean and standard deviation (uncertainty) of the Melbourne 700 hPa relative humidity (RH) forecast by the 20 October, 2004, "runs" - 00UTC, 06UTC, 12UTC and 18UTC, and a Line of Best-Fit based on the standard deviation (sd) data.

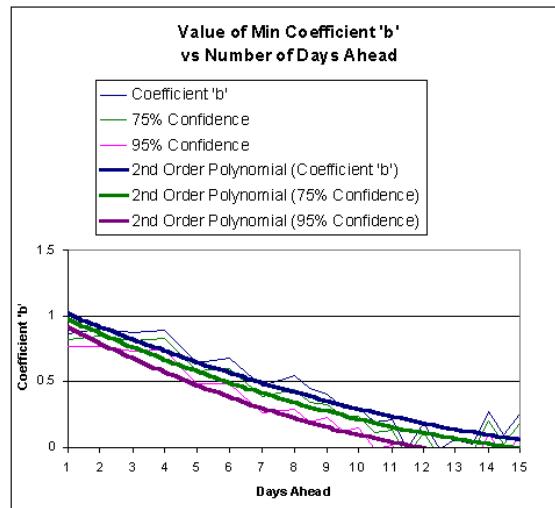



**Figure 8(a)** Mean and standard deviation (uncertainty) of the Melbourne 850 hPa temperature forecast by the 20 October, 2004, "runs" - 00UTC, 06UTC, 12UTC and 18UTC, and a Line of Best-Fit based on the standard deviation (sd) data.

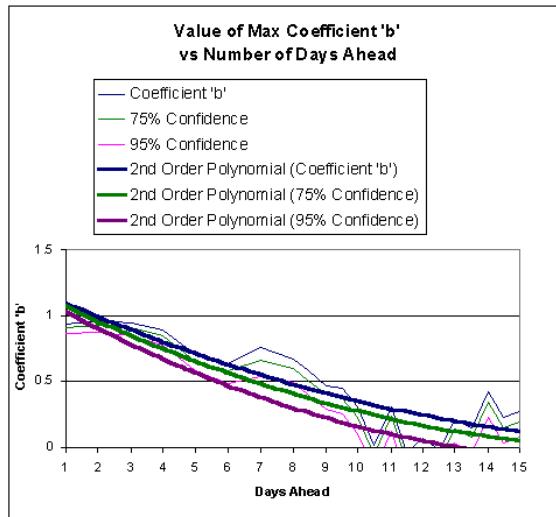



**Figure 8(c)** RMS Error (deg C) of "smoothed" and "unsmoothed" forecasts of maximum temperature.

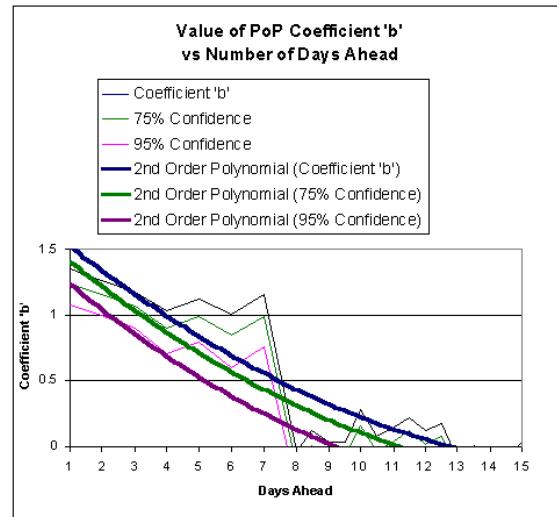



**Figure 9(a)** Day-to-day fluctuations in the departure from normal of observed and forecast maximum temperatures 8 and 8.5 days in advance. The cold days of 14 Aug and 11 Sep were well anticipated, as also were the warm days around 25 Aug, 20 Sep and 12 Oct.

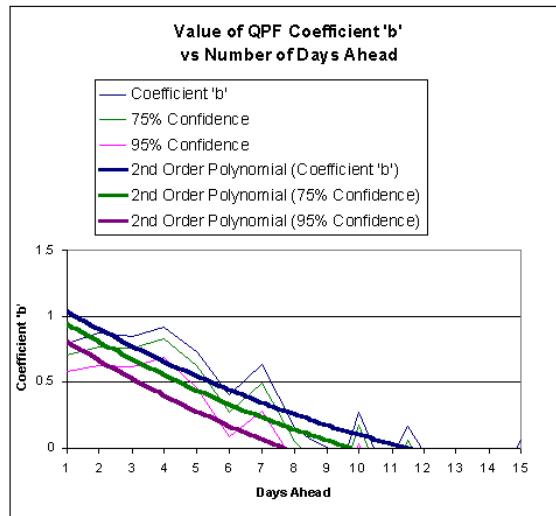



**Figure 10** Overall % variance explained by the Max, Min, QPF and PoP Equations 1. Cases of negative values arise from the relationships between the observed departure from normal and that observed several days before being negatively correlated.

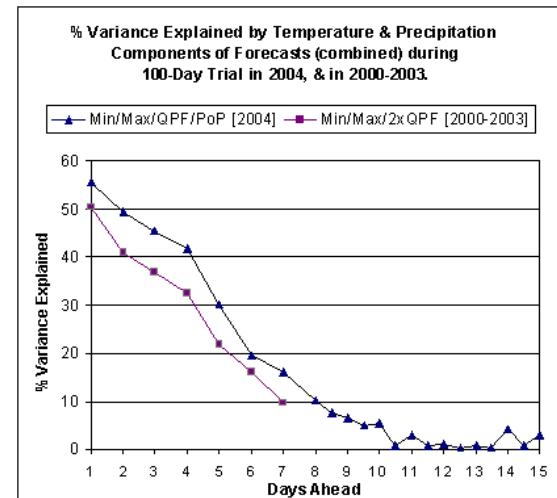



**Figure 9(b)** Comparison between the departures from normal of observed and forecast maximum temperatures 8 and 8.5 days in advance.




**Figure 11** Confidence limits for the regression coefficients 'b' in the Min equations. In calculating confidence limits, the number of degrees of freedom is reduced by half. Positive values of 'b' suggest skill.

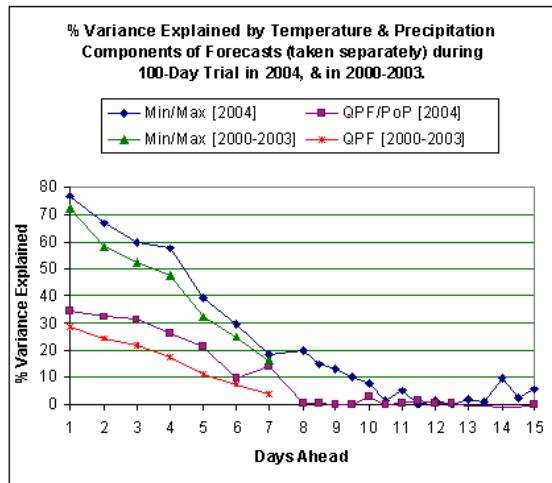



**Figure 12** Confidence limits for the regression coefficients 'b' in the *Max* equations. In calculating confidence limits, the number of degrees of freedom is reduced by half. Positive values of 'b' suggest skill.



**Figure 14** Confidence limits for the regression coefficient 'b' in the *PoP* equations. In calculating confidence limits, the number of degrees of freedom is reduced by half. Positive values of 'b' suggest skill.




**Figure 13** Confidence limits for the regression coefficients 'b' in the *QPF* equations. In calculating confidence limits, the number of degrees of freedom is reduced by half. Positive values of 'b' suggest skill.



**Figure 15** An analysis of the variance explained by

- The 2000-2003 forecasts (the official forecasts for 1, 2, 3, and 4 days ahead, and the official trial forecasts for 5, 6, and 7 days ahead); and,
- The 2004 forecasts (forecasts between 1 and 15 days ahead during the 100-day trial).

For the purpose of this analysis, temperature and precipitation components of the forecasts are combined.



**Figure 16** An analysis of the variance explained by

- The 2000-2003 forecasts (the official forecasts for 1, 2, 3, and 4 days ahead, and the official trial forecasts for 5, 6, and 7 days ahead); and,
- The 2004 forecasts (forecasts between 1 and 15 days ahead during the 100-day trial).

For the purpose of this analysis, temperature and precipitation components of the forecasts are taken separately.

COMMONWEALTH BUREAU OF METEOROLOGY

LEARN ABOUT METEOROLOGY | PUBLICATIONS | NEWS | ABOUT US | CONTACTS

WEATHER & WARNINGS | CLIMATE | HYDROLOGY | ABOUT SERVICES | REGISTERED USER SERVICES

Weather: National | Victoria | NSW | ACT | Queensland | South Aus | Western Aus | Nth. Territory | Tasmania

**Day-1 to Day-15 Melbourne Forecast**  
Issued on Saturday, 13 November 2004, at 4pm

| Day & Date            | Morning       | Afternoon | Min Temp (deg C) | Max Temp (deg C) | Precip Amount (mm) | Precip Prob (%) |
|-----------------------|---------------|-----------|------------------|------------------|--------------------|-----------------|
| Sunday 14 November    | Shower        | Shower    | 11               | 19               | 1.3                | 50              |
| Monday 15 November    | Shower        | Shower    | 11               | 17               | 1.3                | 50              |
| Tuesday 16 November   | Sunny         | Sunny     | 8                | 22               | 0                  | 10              |
| Wednesday 17 November | Sunny         | Windy     | 11               | 33               | 0                  | 20              |
| Thursday 18 November  | Rain          | Rain      | 17               | 22               | 7.5                | 90              |
| Friday 19 November    | Shower        | Shower    | 12               | 18               | 1.3                | 50              |
| Saturday 20 November  | Shower        | Shower    | 11               | 19               | 1.3                | 50              |
| Sunday 21 November    | Partly Cloudy | Sunny     | 13               | 19               | 0                  | 10              |
| Monday 22 November    | Sunny         | Sunny     | 11               | 21               | 0                  | 1               |
| Tuesday 23 November   | Sunny         | Sunny     | 11               | 23               | 0                  | 1               |
| Wednesday 24 November | Sunny         | Sunny     | 12               | 31               | 0                  | 2               |
| Thursday 25 November  | Sunny         | Sunny     | 16               | 34               | 0                  | 4               |
| Friday 26 November    | Sunny         | Sunny     | 19               | 34               | 0                  | 7               |
| Saturday 27 November  | Shower        | Shower    | 21               | 33               | 0.2                | 53              |
| Sunday 28 November    | Cloudy        | Cloudy    | 16               | 23               | 0                  | 37              |

**The Weather Icons**

Acknowledgement: Bureau of Meteorology & World Meteorological Organisation



**Figure 17** A possible depiction of the future style of forecasts (based on actual forecasts derived from the output of the GFSrl model as interpreted by the knowledge based system). [next column]→

Now compute the weather graphic HTML code:

**Figure 18** An example of the code produced by the weather graphic generator.