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1. Introduction 
 
     Treloar and Stern (1993) developed a climatology of Victorian severe thunderstorms, stratifying the 
data according to synoptic type.  The basis for the synoptic types was the direction, strength and 
curvature of the surface flow. Some broad generalisations were derived.  These were that:  

• Severe local wind damage, including that caused by tornadoes, is most frequent during the 
months of November, December, and January, between the hours of 1400 and 1800, and in 
association with strong cyclonic NNW or NNE flow.  

• Large hail is most frequent during the months of November and December, between the hours of 
1400 and 1800, and in association with strong cyclonic NNW flow.  

• Flash flooding is most frequent during the months of November and December, between the 
hours of 1400 and 1600, and in association with strong cyclonic NNE flow and moderate cyclonic 
NNW flow. 

 
2 Determining the Synoptic Types 
 
     The synoptic types over the region (refer to Figure 1) were determined as follows: 
 

 
Figure 1 Diagram depicting the grid of locations used to determine synoptic characteristics 
around Melbourne (M). 
 
     The strength of the flow is divided into four categories.  Defining a and b, respectively, as the 0900 
hours EST pressure differences: 
a: Smithton [41°S 145°E]-Hay [35°S 145°E]; and, 
b: Gabo Is [38°S 150°E]- Mt Gambier [38°S 141°E], 
which reflect easterly and northerly gradient wind components, the categories are: 
(1) light L, where a2+b2(hPa)2≤1; 
(2) weak W, where 16≥a2+b2(hPa)2>1; 
(3) moderate M, where 81≥a2+b2(hPa)2>16; and, 
(4) strong S, where a2+b2(hPa)2>81. 
     Where the strength is L, the direction is said to be variable (V); otherwise: 
(a) where a>0 the direction of the surface flow is (π/2)-atan(b/a) divided into 4 octants (NNE,ENE, 

ESE,SSE); otherwise, 
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*Corresponding author address: Harvey Stern, Victorian Regional Office, Bureau of Meteorology, Box 
1636M, Melbourne, 3001, Australia; e-mail: H.Stern@bom.gov.au 



(b) where a≤0, the direction of the surface flow is (3π/2)-atan(b/a) divided into 4 octants (SSW, 
WSW,WNW,NNW); unless, 

(c) the direction of the surface flow places it on the boundary between two octants, in which case the 
direction is the first of the series: NNW,NNE,WNW,ENE,WSW,ESE,SSW,SSE. 

     The cyclonicity of the flow is determined by whether or not the pressure at Melbourne [38°S 145°E] is 
greater than that at Forrest [31°S 128°E].  If  (Melbourne pressure)>(Forrest pressure) then the flow is 
anticyclonic (A); otherwise, it is cyclonic (C). 
 
3. Re-Deriving the Synoptic Climatology 
 
     The climatology has since been re-derived (Table 1, Figure 2, Figure 3) specifically for the Melbourne 
metropolitan area, drawing upon data from the Melbourne Central Business District (CBD), Melbourne 
Aerodrome, Moorabbin Aerodrome and Laverton.  It encompasses all thunderstorm occurrences (not just 
severe thunderstorms).  Cyclonic flow from the ENE, NNE or NNW, is most likely to be associated with 
thunderstorms, while thunderstorms are unlikely to be associated with anticyclonic flow. 
     It is pertinent to state that a thunderstorm climatology derived from data over an area will over-
estimate the frequency of occurrence of thunderstorms for a point.  This happens in much the same 
manner as return periods of extreme rainfall events derived for a point are greater than corresponding 
return periods for an area. For example, the return period for a 100 mm fall over 24 hours is 
approximately 50 years for occurring at a single point in the Melbourne CBD, but is only about 5-10 years 
for occurring somewhere over the entire Melbourne Metropolitan area (Figure 4). 
 
Table 1 The synoptic types: L, W, M, and S correspond to light, weak, moderate and strong flow; 
V, NNW, WNW, etc. correspond to variable flow, and flow from the eight octants; and, C and A 
correspond to cyclonic and anticyclonic flow.  Frequency of thunderstorms over the Melbourne 
Metropolitan Area for each type is given in brackets. 
 

Synoptic 
Type 

Flow 
Strength 

Flow 
Direction 

Flow 
Cyclonicity 

1(18%) L V C 
2(3%) L V A 

3(29%) W NNW C 
4(5%) W NNW A 

5(14%) W WNW C 
6(1%) W WNW A 
7(9%) W WSW C 

8(<1%) W WSW A 
9(5%) W SSW C 

10(1%) W SSW A 
11(4%) W SSE C 

12(<1%) W SSE A 
13(8%) W ESE C 
14(1%) W ESE A 

15(23%) W ENE C 
16(1%) W ENE A 

17(26%) W NNE C 
18(5%) W NNE A 

19(22%) M NNW C 
20(5%) M NNW A 

21(14%) M WNW C 
22(1%) M WNW A 
23(4%) M WSW C 

24(<1%) M WSW A 
25(5%) M SSW C 

Synoptic 
Type 

Flow 
Strength 

Flow 
Direction 

Flow 
Cyclonicity 

26(<1%) M SSW A 
27(4%) M SSE C 

28(<1%) M SSE A 
29(3%) M ESE C 

30(<1%) M ESE A 
31(16%) M ENE C 
32(3%) M ENE A 

33(32%) M NNE C 
34(6%) M NNE A 

35(16%) S NNW C 
36(6%) S NNW A 
37(5%) S WNW C 

38(<1%) S WNW A 
39(4%) S WSW C 

40(<1%) S WSW A 
41(6%) S SSW C 

42(<1%) S SSW A 
43(7%) S SSE C 

44(<1%) S SSE A 
45(3%) S ESE C 
46(2%) S ESE A 

47(22%) S ENE C 
48(7%) S ENE A 

49(28%) S NNE C 
50(9%) S NNE A 
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Figure 2 Frequency (%) of thunderstorms associated with each direction for weak (left column), 
moderate (middle column), and strong (right column) cyclonic synoptic flow, and also for light and 
variable cyclonic flow. 
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Figure 3 Frequency (%) of thunderstorms associated with each direction for weak (left column), 
moderate (middle column), and strong (right column) anticyclonic synoptic flow, and also for light 
and variable anticyclonic flow. 
 
4. Linear Relationship 
 
     The results of an analysis of the linear relationship between the predictand (Probability of 
Thunderstorms - PoTS), and the predictors (various combinations of Sine Day of Year, Cosine Day of 
Year, Precipitation Amount, Occurrence of Precipitation, and Strength of Flow), carried out on 40 years of 
unstratified data (1961-2000), are now discussed. 
     The most significant predictor is √Precipitation Amount, which suggests that the greater the amount of 
precipitation, the higher is the likelihood of thunderstorms.  Both the partial correlation coefficients 
between PoTS and the combinations (√Precipitation Amount x Sine Day of Year) and (√Precipitation 
Amount x Cosine Day of Year) are positive, suggesting that this relationship is strongest during the late 
summer/early autumn. 
     Also highly significant is the predictor, Occurrence of Precipitation, suggesting that the greater the 
likelihood of precipitation, the higher is the likelihood of thunderstorms.  Both the partial correlation 



coefficients between PoTS and the combinations (Occurrence of Precipitation x Sine Day of Year) and 
(Occurrence of Precipitation x Cosine Day of Year) are positive, suggesting that this relationship (also) is 
strongest during the late summer/early autumn. 
     The partial correlation coefficient between PoTS and Strength of Flow is negative, identifying how 
weaker synoptic flow is more likely to be associated with thunderstorms. 
 

Table 2 Partial (Linear) Correlation Coefficients for the Predictors (in order of significance) 
- Unstratified Development Data (1961-2000). 

 
Significance Data: 

 
Predictor: 

Partial 
Correlation 
Coefficient 

Regression 
Coefficient 

t (14600) Significance 

√Precipitation Amount +0.189 +0.267 23.26 <0.01% 
√Precipitation Amount X 
Cosine Day of Year 

+0.0921 +0.147 11.17 <0.01% 

Occurrence of Precipitation +0.0407 +0.0578 4.92 <0.01% 
Occurrence of Precipitation X 
Cosine Day of Year 

+0.0358 +0.0629 4.32 <0.01% 

Strength of Flow -0.0292 -0.0284 -3.53 0.04% 
Cosine Day of Year +0.0287 +0.0342 3.46 0.05% 
√Precipitation Amount X 
Sine Day of Year 

+0.0260 +0.0423 3.14 0.17% 

Occurrence of Precipitation X 
Sine Day of Year 

+0.0168 +0.0302 2.03 4.21% 

Sine day of Year +0.0109 +0.0130 1.31 18.90% 
 

Return Periods for Extreme Rainfall Events (1904-2003). 

Left Diamonds-Melbourne;
Right Diamonds-Metropolitan (10 sites).

Note Different Return Periods (point vs area) - e.g. for 100mm
~50 years for Melbourne; ~5-10 years for Metropolitan.
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Figure 4 Return Periods for Extreme Rainfall Events.  
 
 
 



5. Logistic Regression 
 
     Utilising the Treloar and Stern (1993) system for synoptic typing, Stern and Parkyn (1998, 1999, 2000, 
2001) derived techniques for the prediction of fog and low cloud by applying logistic regression to 
synoptically stratified data. The application of logistic regression is appropriate for estimating the 
probability of occurrence of a particular weather element because the predicted values for the dependent 
variable will never be less than or equal to 0, nor greater than or equal to 1, regardless of the values of 
the independent variables.  This is accomplished by applying the following regression equation 

y=(exp(a+Σbixi))/(1+(exp(a+Σbixi))) 
where ‘y’ is the dependent variable, the xi are the independent variables, and a and the bi are constants.  
In operation, where ‘y’ is a yes/no variable, the equation yields the probability of occurrence of a particular 
phenomenon. 
 
6. Predicting Thunderstorm Likelihood 
 
     Over recent years, Stern (2002, 2003, 2004) has been involved in developing a knowledge based 
weather forecasting system (http://www.weather-climate.com/knowledge.html).  This system generates 
forecasts for a range of weather elements, including the likelihood of thunderstorms.  A logistic model is 
used by the system to predict the likelihood of thunderstorms.  In operation, the system's Quantitative 
Precipitation Forecast (QPF), and its Probability of Precipitation (PoP) estimate, are fed into a set of 
prediction equations, developed by applying logistic regression to sets of synoptically stratified data 
(1961-2000), to yield an estimate of the PoTS.   
     The output of both the worded and the Terminal Aerodrome Forecast (TAF) components of the 
knowledge based system (Figure 5) depend upon whether or not preset cut-off values of PoTS have been 
exceeded.  Critical Success Index (CSI) values, derived using the development data (Figure 6), suggest a 
cut-off in the vicinity of 20% (where there is a maximum CSI of 27%). 
 

 

 
Figure 5 Extracts from the output of the knowledge-based system  
(Web Reference: http://www.weather-climate.com/knowledge.html). 
 
     A comparison was made between Probability of Detections (PODs) and False Alarm Ratios (FARs) for 
different thunderstorm probability cut-off criteria using the development data (Figure 7).  This comparison 
shows that, at 20%, a POD of 49% and a FAR of 63% would result.  These figures are comparable with 
the overall performance figures achieved by the official TAFs issued by the Bureau of Meteorology (BoM) 
Victorian Regional Forecasting Centre (RFC) during 2003 (CSI=29%; POD=54%; FAR=61%). 
       The attributes diagram (Figure 8), which depicts the relationship between observed thunderstorm 
frequency and the corresponding frequency distribution of probability of thunderstorm estimates, shows 
that the relationship is linear. 
 
7. Preliminary Evaluation 
 
     A one-year (2003) preliminary test of the system's performance using independent data was 
conducted.  These independent data were obtained from the output of the BoM Global Numerical 
Weather Prediction (NWP) Model and they were used to generate TAFs for Melbourne Aerodrome, which 



were evaluated.  The performance, as tested using these independent data, proved to be inferior to that 
carried out using the development data.  For example, applying a cut-off of 20% to the independent data, 
the POD was 31%, somewhat lower than the 49% achieved using the development data, and also lower 
than the 54% achieved by the official TAFs issued by the BoM Victorian RFC. 
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Figure 6 Critical Success Index (CSI) for various cut-off probabilities (Brier Skill Score +0.21). 
 

0
10
20
30
40
50
60
70
80
90

100

[0
]

[5
]

[1
0]

[1
5]

[2
0]

[2
5]

[3
0]

[3
5]

[4
0]

[4
5]

[5
0]

[5
5]

[6
0]

[6
5]

[7
0]

[7
5]

[8
0]

[8
5]

[9
0]

[9
5]

[1
00

]

Cut-Off Probability (%)

PO
D

/F
AR

 (%
)

POD FAR

 
Figure 7 A comparison between Probability of Detections (PODs) and False Alarm Ratios (FARs) 
for different thunderstorm probability cut-off criteria. 
 
8. Planned Future Work 
 
     Firstly, further evaluation is planned, this time operating the knowledge based system under the 
assumption of the "perfect prog", and using actual 2003 observational data as input.  This should provide 
a measure of the stability of the prediction equations, and also highlight any inadequacies in the NWP 
model output. 
     Secondly, Hall et al. (1997) previously have achieved considerable success with their neural network 
developed for PoP estimates and for QPFs over the Dallas-Fort Worth (Texas) area.  In the context of the 
present work, preliminary results from an exercise involving the application of Artificial Neural Networks 
(ANNs) to thunderstorm prediction (employing the Software Package Statistica 6 
(http://www.statsoft.com)) show that non-linear models do not always outperform linear models.  
Nevertheless, in one experiment, of the ANNs developed on types with NNE cyclonic flow (NNE is the 



direction associated with the highest frequency of thunderstorms), the "best" model proved to be a 4-
Layer Perceptron with 5 inputs (Cosine Day of Year, QPF, QPF x Cosine Day, PoP, PoP x Cosine Day), 
12 nodes at Layer 2, and 8 nodes at Layer 3 (Figure 9).  Its predictions recorded a relatively high Brier 
Skill Score of +0.37, only slightly below the Logistic Model's +0.38.  It is planned to further investigate the 
potential application of ANNs to thunderstorm prediction. 
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Figure 8 Attributes diagram (observed thunderstorm frequency vs forecast thunderstorm 
probability and predictive distribution - frequency of forecasts). 
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Profile : MLP 5:5-12-8-1:1 ,  Index = 5
Train Perf. = 0.916891 ,  Select Perf. = 0.881703 ,  Test Perf. = 0.88334

 
Figure 9 The best ANN developed for types with cyclonic NNE flow, a 4-Layer Perceptron with 5 
inputs (Cosine Day of Year, QPF, QPF x Cosine Day, PoP, PoP x Cosine Day), 12 nodes at Layer 2, 
and 8 nodes at Layer 3 (activation levels are displayed in color - red for positive activation levels, 
green for negative). 


